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ABSTRACT

Performance of estimators of several commonly used flood frequency
models is evaluated in terms of the statistical criteria of bias (BIAS),
standard error (SE), and mean square.error (MSE). The procedure is
based on Monte Cérlo simulation. The models considered are the Gumbel's
extreme value type 1 (EV1), log Pearson type 3 (LP3), and the two
component extreme value (TCEV) distributions. The estimators used are
based on the methods of moments (MOM), maximum likelihood estimation
(MLE), probability weighted moments (PWM), least squares (LEAS), incom-
plete means (ICM), mixed moments (MIX), and entropy (ENT).

The performance of the EV]l estimators is evaluated for random as
well as serially correlated samples. MLE provides efficient quantile
estimates even for small samples, closely followed by ENT. The PWM
quantile estimates are unbiased for random samples and least biased for
serially correlated samples. The performance of the estimators worsens
for the serially correlated case, though they perform much more closely
in this case. A new correction is derived, based on simulation results,
to correct the bias in the MOM quantile estimates.

The LP3 estimators are evaluated over the range of coefficients of
variation and skewness characteristic of the real flood occurrence. The
performance of the estimator recommended by the U.S. Water Resources
Council, and other competing estimators is significantly inferior to
that of MIX and another estimator based on the moments of the variate in
real space. A new methodology is developed to solve for the MIX
parameter estimates directly, without having to resort to iterative

procedure.
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The TCEV distribution has been shown by Rossi, et al. (1984) to
possess many of the properties characteristic of the real world floods.
The ENT estimator is derived for this model. It performs similar to MLE

estimator and has the advantage of being relatively easier to solve.
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Chapter 1
INTRODUCTION

The approaches to estimate the design flood fall under two cate-
gories--deterministic and probabilistic. The deterministic approach
essentially utilizes the rainfall-runoff relation to estimate the flood
corresponding to a specified design storm. While the probabilistic
approach utilizes the flood probability model in place of the rainfall-
runoff relation, and associates probability levels with the estimated
flood events. The flood phenomena is the hydrologic response at the
watershed scale. The probabilistic approach recognizes that the
hydrologic systems at the watershed scale are poorly identified in terms
of the generally well understood local hydrologic processes, and suffer
from scanty data bases. Thus, as a logical outcome, this approach
employs stochastic lumped models whose parameters are no longer physi-
;ally measurable and so must be estimated statistically from the sample
of the lumped response--the flood record.

Flood frequency analysis eﬁcompasses the techniques utilized to
estimate the magnitude of extreme flood events corresponding to speci-
fied probability levels. It is the probabilistic approach to flood
estimation. The knowledge of magnitude of extreme flood events is
important in such areas as flood plain management and design of
hydraulic structures. The increased water resources development and
many programs of national scope involving large outlays of capital, such
as bridge and drainage design for national highway systems, flood protec-
tion works, and flood insurance programs call for hydrologic input of

frequency of occurrence of extreme events (Benson, 1968). Thus, the



flood frequency analysis forms the basis for the engineering design of
many projects and the economic analysis of flood-related programs.

The magnitude of & flood event is commonly referred to as T-year
flood, where T usually called the return periqd or the recurrence
inter;al, is a measure of the probability level of the event. The
T-year flood event is that which can be expected to be exceeded once on
an average of every T years. The estimation of the T-year flood
typically involves inferences based on n years of flood records. The
occurrence of extreme flood events is believed to be a stochastic
process, since they tend to occur in an apparently random manner. Thus,
one of the fundamental hypotheses of flood frequency analysis is that
extreme flood events are random variables. This can be contrasted with
the so-called PMF or SPF approach which treats the extreme events as
‘deterministic in nature, and specifies upper bounds on the occurrence of
such events. Yevjevich (1972) has characterized the difference between
the use of the PMF and the probabilistic flood frequency approach as the
difference between expediency and truth.

Due to the probabilistic assumption of flood frequency analysis, it
is important that the sequence of flood records used for inferences be
representative of a random sample. The popular approach for abstfacting
a random sample is to compose the sample of instantaneous annual maximum
discharges recorded during successive water years. This so-called
annual maximum (AM) series, while seemingly consisting of occurrences of
independent and identically distributed random variables (random
sample), utilizes a very small fraction of the flood records available.
Another approach is to construct the sample of all flood peaks exceeding

a certain threshold discharge. The resulting series is called the



partiel duration series, or peak over threshold (POT) series. Various
models have been developed for the analysis of both AM and POT series
(Cunnane, 1986). However, the POT analysis has not achieved the popu-
larity of the AM models, primarily because the randoﬁ sample criterion
is hard to justify for partial duration series, and the POT models are
more complicated than the AM models. This study concerns the AM series
models onlyv. When the AM series is being analyzed, the probability of
the T-year flood being exceeded in any single water year is 1/T. 1In the
case of POT series, this probability is, in general, a function of many
other factors besides T.

In many instances, the problem of flood frequency analysis boils
down to the estimation of the T-year return period flood event QT’ given
the annual maximum series of flood discharges derived from n years of
record, where n usually is much less than T. 1In these cases, a proba-
bility model is used to fit the random sample, which is then extrapo-
lated to the probability level, or equivalently, return period of
Interest.

The true probability distribution of floods is obviously unknown
and the aim of fitting a probability model to the AM series is to obtain
a good estimate aT of the T-year flood QT (unknown). The question of
how to obtain the best estimate of QT has received considerable
attention. aT is subject to variability on account of both model error
and sampling error. If T is greater than n, the error in the T-year
flood estimate aT can be very large and the associated design losses
quite considerable. Since the decisions based on the use of the T-year

flood estimate have economic implications, the choice of this estimate

should ideally be based on the economic loss function which expresses



the loss incurred in terms of increased cost due to the mis-specifica-

tion of a design flood by a particular estimate (Slack, et al., 1975).
However, the form éf the loss function is application-specific, and
reasonable loss function types are yet to be found (Cunnane, 1986). 1t
is, therefore, necessary to use surrogate loss functions to evaluate the
performance of competing estimators for identifying the best estimator
(Stedinger, 1980). One such surrogate loss function is the symmetric
quadratic (Slack, et al., 1975; Landwehr, et al., 1980) which is
propertional to the mean square error (MSE) of the quantity being
estimated. Another surrogaté loss function is the linear form which is
proportional to the bias (BIAS). 1In all recent studies evaluating the
performance of various competing flood quantile estimators, MSE (also
equalling the sum of the variance and the square of the bias) and its
components standard error and BIAS have been used as the criteria for
selecting the most efficient (or best) estimator. The most efficient
estimate is that which minimizes the MSE (or equivalently, the root MSE,
equalling the square root of the MSE).

While the true or the so-called parent distribution of the real-
world annual floods is unknown, many of its characteristics derived from
a great many real world AM series have been investigated with particular
emphasis on the behavior of the distribution's right-hand tail, since
fhis portion of the distribution more directly affects the bias in the
extreme flood quantile estimator. As the sample skewness is a statisti§
particularly sensitive to the behavior of the right tail of the distri-
bution, the analysis of the skewness of the observed AM series should be
especially useful., Matalas, et al. (1975) found that within a given

geographical region, the skewness of the observed AM series exhibited a



verv high variability (standard deviation) about its regional mean.

They &lso found that this high degree of variability could not be
accounted for by the commonly used two- or three-parameter distribu-
tions. This phenomenon has since come to be known as the condition of
separation. This condition has also been noted in Italian AM data by
Rossi (1984) and in British data by Beran, et al. (1986). It was shown
by Wallis, et al. (1977) that systematic changes in skewness over time
or the mixing of different values of skewness within the region could
cause separation. However, it is yet to be proved whether separation
indeed occurs due to these reasons, or it is an inherent propertv of the
parent distribution. It appears from the current literature that, at
present, the condition of separation is thought to be an inherent
property of the parent distribution by many hydrologists. Landwehr, et
al. (1978) observed that high kurtosis is a necessary but not sufficient
condition for separation. Shen, et al.(1980) and Ochoa, et al. (1980)
drew a distinction between the so-called light-tailed distributions and
the Paretian-tailed (or heavy-tailed) distributions. Ochoa, et al.
(1980), based on the analysis of 407 AM series in the U.S., observed
that the frequency with which the Paretian-tailed distribution provided
a better fit to the data suggested that such distributions occurred very
frequently in nature.

It would, therefore, appear from the evidence thus far that the
true distribution of floods is heavily tailed with skewness greater than
1.14 (Gumbel skew), is highly kurtotic, and has coefficient of variation
in the range of 0.3 to 0.8 (for U.S. floods; Landwehr, et al., 1978).
The choice of a "good" parent distribution that mimics these charac-

teristics is an important step in flood frequency analyeis. 1In fact,
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the performance of various competing éstimators can be realistically
evaluated and compared by performing sampling exéeriments from the
parent distribution.

Flood quantile estimators can be based on several distributions and
also on various estimation methods for each distribution. Obviously, we
can also have estimators based on the parent distribution that is being
used for sampling experiments. Does this mean that an estimator based
on & "good" parent distribution is the best estimator? Iﬁterestingly
enough, the answer is no. In fact, the parent distribution, if directly
used for flood quantile estimetion yields estimates that are accurate
(small bias) but rather imprecise (large variability) due to the small
sample size. It has been argued, therefore, (Landwehr, 1980; Kuczera,
1982) that preference should be given to more robust flood quantile
estimators derived from a distribution more parsimonious (fewer number
of parameters) in the number of parameters, as long as they are more
efficient (smaller MSE) and resistant over a wide parameter range. Then
the loss incurred from the large bias resulting from the more parsimo-
nious model would be more than offset by the reduced estimator variance.
Nevertheless, it is worth noting that when the size of the sample used
in the estimation is large (as in regionalization techniques), the
variance of the estimator will no longer be the main contribution to its
MSE. Then the most efficient estimator may be drived from the parent
distribution.

Two empirical distributions similar to one another have been
suggested as the flood parent able to account for the condition of
separation without having to invoke spatial mixing of the distribution

parameters. These include the 5-parameter Wakeby distribution suggested



by H. A. Thomas, Jr., and discussed by Houghton (1977, 1978), and Land-
wehr, et al. (1978), and the Lambda distribution, introduced by Joiner
and Rosenblatt (1971) and discussed by Stedinger (1977). Recently, a
theoretical-type model based on the compound Poisson process is shown to
be a viable parent distribution accounting for the condition of separa-
‘tion. This is the 4-parameter two component extreme value (TCEV) dis-
tribution suggested by Rossi, et al. (1984).

The techniques of flood frequency analysis utilizing AM series can
be classified in one of the following analyses: at-site only, at-
site/regionzl, and regional only (Cunnane, 1986).

In at-site analysis a probability model is selected and parameters
of the model are estimated by using a suitable estimation technique.
Subsequently, the T-year flood quantile can be estimated from the fitted
model. Many probabilistic models have been used in flood frequency
analysis; notable among these are the log Pearson 3 distribution,
recommended by the U.S. Water Resources Council (1967, 1975, 1977,
1981), the three parameter log normal distribution (Burges, et al.,
1975), and Gumbel's extreme value type 1 (EV1) distribution (Gumbel,
1958). The British Flood Studies Report (1975) recommended the usage of
the general extreme value (distribution (3 parameters). EV1 distribu-
tion is a special case of the general extreme value distribution. The
at-site analysis is simple in application and can yield reasonable
estimates. However, the at-site analysis is almost always based on a
rather short flood record (small n). Thus, the resulting flood quantile
estimates can be highly variable. This has prompted exploration of
regional estimation methods which pool together information from a

number of sites in similar hydro-meteorological regions.



The at-site/regional analysis includes three important procedures:
index flood method, empirical Bayes, and the two component extreme value
method. All types of at-site/regional analysis methods implicitly or
explicitly make assumptions about the regional distribution of annual
flood;. In the index flood method, the annual flood series are nor-
malized by the at-site means. Then it is assumed that the distribution
of the standardized annual flood is identical at all sites in the region.
The two component extreme value distribution procedure is a modification
of the index flood method, in which the standardized annual flood series
that are assumed to follow a two component extreme value distributionr
are normalized using the at-site estimates of the two parameters of the
extreme value distribution. An alternative regionalization approach
which does not rely on normalized flood series is the empirical Bayes
method. This method assumes that the parameters governing the distri-
bution of annual floods at a site in a region coﬁe from a specified
superpopulation, which has unknown parameters. The parameters are
inferred from the flood data themselves, or from relationships between
flood peak characteristics and physiographic and climatic factors.
Kuczera (1982a, 1982b) suggests several estimators of flood quantiles
based on this approach.

The "regional only" approach involves finding a regression relation-
ship between the at-site flood means and the catchment characteristics
(such as area, slope) in the region. The regressed relation is used to
estimate the at-site mean at the ungauged site which is then used to
estimate the T-year flood quantile from the regional flood frequency

model.



The objective of this work is to evaluate and compare the perfor-
mance of estimation methods of some commonly used probability models.
The models considered are the Gumbel's (EV1), log Pearson 3 (LP3), and
the two component extreme value (TCEV) distributions; Use of EV1 and
LP3 distributions have been very common in fl;od analysis. The TCEV
distribution, a 4-parameter model, is of recent origin (Rossi, et al.,
1984). The distribution emerges as a mixture of two EV1 distributions,
and can account for the outliers in flood series. It offers physical
justification to the stochastic process of floods, at least partially,
and appears suitable for regional analysis.

Several estimation methods exist for EV1 and LP3 models. Some of
these methods have been in use for a long time and are termed here as
classical methods. Several other methods have been proposed relatively
recently along with various claims about their performance.

It is important to evaluate the performance of all available esti-
mators of a model, especiallv for small samples, for which the vari-
ability of estimators is quite large and so is the marked difference in
their performance. To minimize design losses, one would like to use the
most efficient éstimator.

_ Approximate formulae can be derived for asymptotic standard error
of several of the estimators. But one is chiefly interested in the
sampling properties of the estimators for rather small sample sizes
(< 50) not covered by the asymptotic formulae. The sampling distribution
of the estimator is generally intractable in the sample range of
interest. Monte Carlo sampling experiments, therefore, offer an attrac-
tive procedure for evaluating and comparing the performance of estima-~

tors. Cunnane (1986) points out that the simulation experiments have



been reported in most recent work on flood frequency analysis. Thus,
the use of simulation has become a standard technique to evaluate the
performance of competing estimators.

Using random sampling experiments, the estimators of EV1 and LP3
distributions are assessed in an at-site framework, while the TCEV

estimator is investigated in a regional framework.

10



Chapter 2
LITERATURE REVIEW

The field of flood frequency analysis has rapidly developed since
the late 1960's. Mos and Kirby (1985) have traced the principal aspects
of American practice since the 1860's, while at the other end, Greis
(1983) reviewed the developments in flood frequency analysis in the
early 1980's. Lettenmaier (1985) has reviewed recent developments in
regional flood frequency analysis. Recently Cunnane (1986) has outlined
the selected developments of flood frequency analysis under a number of
different headings such as AM model development, regional flood esti-
mates, parameter estimation, and simulation. In the following survey,
an attempt has been made to review the literature that is directly or
indirectly relevant to the present work.

2.1 The Probability Models and Estimators

A number of empirical models have been suggested for flood fre-
quency analysis. One of the oldest among them to find hydrological
acceptance is the Gumbel's extreme value type 1 (EV1) distribution
(Gumbel, 1958). According to Lettemmaier (1982), the EV1 distribution
has a certain intuitive appeal. It provides partial physical justifi-
cation to the stochastic processes controlling floods (it can be seen to
arise as the asymptotic distribution of extremes, where the process
generating the extreme falls into the class of distributions having
exponential tails). From a statistical standpoint, the EV1 is attrac-
tive, since the distribution has only two parameters which can be
estimated rather easily, and the inverse explicit form of the cumulative

distribution function permits easy estimation of quantiles. The EV1

11
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distribution has a constant skew (= 1.14). Matalas, et al. (1975)
found, in a comprehensive study of the U.S. flooé records, £hat for most
regions considered, the regional mean skew coefficient was within one
standard deviation of the EV1 wvalue.

Several methods have been proposed for estimating the parameters
and quantiles of the EV1 model. While the methods of moment (MOM) and
maximum likelihood estimation (MLE) have been in use for a long time,
several new methods of estimation have been proposed fairly recently.
The method of probability weighted moments (PWM), introduced by Green-
wood, et al. (1979), was used by Landwehr and Matalas, et e&l. (1979) to
estimate Gumbel parameters and quantiles. Based on the principle
(Jaynes, 1961, 1982) of maximum entropy, Jowitt (1979) suggested entropy
estimators (ENT). The least squares estimators (LEAS) were used by Chow
(1953), and Lowery and Nash (1970), and have since been applied to the
EV1l distribution by Jain and Singh (1986). Houghton (1978) introduced
the method of incomplete means (ICM), which is easy to apply for EV1
distribution (Jain and Singh, 1986). Fiorentino and Gabriele (1984)
derived a bias-corrected MLE estimator and compared it to other
estimators through sampling experiments., Lettenmaier and Burges (1982)
took a critical look at Gumbel's fitting method reported in many
textbooks (Linsley, et al., 1975). Greis and Wood (1981) proposed a
regionél procedure based on the EV1/PWM. |

Some of the other distributions that have received attention in
flood frequency analysis are the general extreme value (GEV), log
Pearson 3 (LP3), log normal 2 and 3 (LN2, LN3), the five parameter Wakeby
(WAK) , and the recently developed two component extreme value (TCEV).

These distributions are popular because they are all capable of modeling
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the positively skewed, thick-tailed distributions from which the AM
floods are believed to arise.

The GEV distribution was recommended for the British rivers by the
Flood Studies Report (NERC, 1975a). The EV1 distribution emerges as a
special case of the GEV distribution (Hall, 1984). Hosking, et al.
(1985) proposed a GEV/PWM regionalization procedure and compared it with
other procedures using sampling experiments. Nevertheless, the GEV
distribution fails to account for the separation phenomenon (Cunnane,
1986).

The U.S. Water Resources Council (USWRC) (Bulletir 15, 1967), based
on a comprehensive study reported in Benson (1968), recommended the use
of the LP3 distribution as a base method of flood frequency analysis for
U.S. floods. It was noted (Benson, 1968) that the choice was not fully
conclusive from a statistical standpoint, but rather was made to fulfill
the demonstrated need for standardization and uniformity, especially
among the federal agencies. The method of estimation proposed in
Bulletin 15 (1967), and referred to in this study as the indirect method
of moment (MMI), is basically the method of moments applied to the
log-transformed data in which the mean, vafiance, and skeﬁness estimates
of the log-data are equated to the population values, and the resulting
equations solved to estimate the parameters. The sample skewness
estimate used in parameter estimation is a statistic with peculiar
properties. It is highly variable, is considerably downward biased, and
algebraically bounded (Wéllis, et al., 1974; Kirby, 1974; Lettenmaier
and Burges, 1980). Hence, the estimation method propose§ by the USWRC

is highly susceptible to these problems in the sample skewness estimate.

To circumvent this problem, the skewness estimate was modified in USWRC
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Bulletin 17A (1977) as a sum of the sample skewness estimate and
regional skewness coefficient weighted by a function of the sample size.
The USWRC (Bulletin 17B, 1981) has again modified the skewness estimate
and re-expressed it as a weighted sum for ali'sample sizes.

fhe endorsement of the LP3 distribution by the U.S. Water Resources
Council initiated considerable research about the advisability of using
the LP3 distribution, and in general, boosted research in other
directions of flood frequency analysis (Greis, 1983). Bobee (1975)
derived the density function of the distribution and investigated its
properties. He also derived a new method of parameter estimation,
referred to here as the direct method of moments (MMD), and recommended
its usage in preference to MMI of USWRC. Bobee showed that the LP3
density funciion was capable of assuming diverse shapes ranging from
reverse J to U, and could have upper or lower bounds depending upon the
parameter values. A comparison of different estimators of the LP3 was
made by Bobee and Robitaille (1977) based on annual flood series. They
found that MMD provided a better fit to the data than MMI. Condie
(1977) derived the MLE estimator and the asymptotic standard error of
its quantile estimate for the LP3 distribution. Nozdryn-Plotnicki and
Watt (1979) carried out sampling experiments and tested the performance
of several estimation methods of LP3 distribution over the range of
parameter values encountered for Canadian rivers.

In a series of papers, Rao (1980a, 1980b, 1981, 1983, 1986)
investigated very comprehensively the properties and estimators of the
LP3 and several other three parameter distributions (1981). Noting the
problems with estimation of the skewness from a sample, he argued that

the MMD and MMI utilizing the skew estimate, are likely to result in
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poor estimation. To obviate the problem, he suggested a new estimation
method, referred to by him as the method of mixed moments (MIX). MIX
combines the first two moments of the real and the log-transformed data,
and thus avoids the use of skewness. Rao carried ouf sampling experi-
ments and, over the range tested by him, founé MIX to be superior to the
other methods (MMD, MMI, MLE). Hoshi and Burges (1981) derived the
asymptotic sampling covariance structure of the MMD parameter and
quantile estimates. Lettenmaier and Burges (1980) derived the bias
correction factors of the skewness estimator of the LP3 and found them to
be a2 function of not only the sample size but also the coefficient of
variation and skewness. 8Singh and Singh (1985) derived a new estimator
based on the principle of maximum entropy. The estimator is referred to
here as the entropy estimator (ENT).

The two component extreme value distribution (TCEV) has been
proposed recently by Rossi, et al. (1984). The distribution could
account for the condition of separation in Italian AM series, and as
such, is a viable contender for the parent distribution of annual
floods. Rossi, et al. (1984) proposed a regional algorithm using the
TCEV/MLE. |

2.2 Sampling Experiments in Flood Analysis

Monte Carlo based sampling experiments have come to be of
increasing use in flood frequency research. Wallis, et al. (1974)
carried out extensive sampling experiments on commoply used sample
statistics. They found pronounced bias, skew, and bounds in the
sampling distributions of the statistics. For instance, skewness was
found to be significantly AOwn-biased for all distributions investigated

by them. Kirby (1974) later proved that the sample skew estimate are



16

algebraically bounded, and the bounds are independent of the distribu~-
tion used. Sampling experiments have become a standard tool in
assessing the performance of various competing estimators under a range
of underlying populations. In a classic investigation, Matalas, et al.
(1975) observed the condition of separation in AM series, and found on
the basis of sampling experiments that the commonly used distributions
could not account for separation. Cunnane (1986) summarizes the
simulation experiments reported in a host of studies on various facets

of flood frequency analysis.



Chapter 3
METHODOLOGY

The frequency analysis procedure involves selecting a probabilistic
model and estimating its parameters from a suitable estimator. Many
probability models have been employed for flood analysis. At the same
time, several estimators have been proposed for each model. There is no
general agreement on the superiority of a probability model. Investi-
gators have fitted several models to various data and have found that no
model fits uniformly better under all situations (Beard, 1974; Boughton,
1980; Houghton, 1978; Jain, 1986).

Likewise, there is no general agreement on the estimator to be
used. Traditionally, the use of the method of moments has been Justi-~
fied on the grounds of computational simplicity. However, a number of
estimators (e.g., maximum likelihood) which were previously computa-
tionally intractable, have now become feasible, due largely to enhanced
computational facilities available these days.

It is emphasized here that choosing the estimator of the model can
be as important as selecting the model itself, for several estimators of
a model can lead to parameter and quantile estimates widely differing in
variability (MSE) and bias. Hence, it is important to study the
performance of various estimators of each probability model, especially
for small samples encountered in practice. The quantile estimates
derived from at-site analysis are highly variable. This variability
increases as the sample size decreases and the return period, T, becomes
large. In this situation, it becomes important to search for the most

efficient estimator. This would ensure that the best estimator

17
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extracting maximum useful information from the data sample is utilized
in hydrologic analysis. It is hoped that an estimator of a model per-
forming well in its own population would behave robustlyv with respect to
an unknown population, as would be the case in practice.

The objective of this study 1s to evaluate the performance of
estimators of several commonly employed probability models in hydrology.
The estimators being random variables, their properties can be charac-
terized by statistical performance indices such as bias and mean square
error. In this study, the performance indices of the estimators are
computed by using random sampling experiments: A large number of
synthetic samples are generated from population of a probability model,
and parameters and quantiles estimated from each estimator. These
estimates are used to calculate the performance indices of estimators.

The simulation approach offers an objective and practical procedure
for evaluating the performance of estimators for small samples usually
encountered in hydrology. A theoretical approach to the problem would
be to derive analyticaily the sampling distribution of each estimator
and evaluate the performance of the estimator from this distribution.
This, in general, is a mathematically very complex task and, hence, not
a viable approach. The simulation approach is clearly superior toc using
the real world data because the real world data has an unknown parent'
distriEution that introduces model errors, and is also prone to measure-
ment errors.

Besides the methods of moments and maximum likelihood estimation,
several new estimators have been developed over the pasf few years. The
method of probability weighted moments, introduced by Greenwood, et al.

(1979), and is suitable for distributions with explicit inverse forms.
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Based on the principle of maximum entropy (Jaynes, 1961), Jowitt (1979),
and Singh and Singh (1985), suggested entropy estimators. The least
squares estimators were used by Chow (1953), Lowery and Nash (197Q), and
Jain apd Singh (1986), among others. Houghton (1978) introduced the
method of incomplete means. Rao (1980b) developed the method of mixed
moments in the context of the log Pearson type 3 distribution. These
estimators will be used, wherever applicable, and their statistical
properties calculated by the simulation approach.

The probability models proposed to be analyzed are Gumbel (EV1),
log Pearson type 3 (LP3) and two component extreme value (TCEV) distri-

butions. These are two, three and four parameter models respectively.

‘The EV1 is the oldest and a widely used model in engineering practice,

while the TCEV is the most recently developed model.

3.1 Performance Criteria of Estimators

The estimators are random variables. Hence, their performance has
to be assessed statistically. Let, © be an estimator for parameters or
quantiles, and E(*) denote statistical expectation. The performance

~

statistics of 0 are defined as:

Bias: BIAS(8) = E(8) - © ' (3.1)

Variance: STD2(8) = E[0 — E(8)]% (3.2)

Mean Square Error: MSE(8) = E(6 -~ 9)2 (3.3)
‘ 2 2

= BIAS™ + STD
In many applications, the performance statistics are normalized by
dividing them by the population values (e.g., in LP3 analysis in this

work).

The expectation and variance of the estimators could be calculated

by following the procedure below.
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3.2 Experimental Design

It is desired to estimate the statistics of é through random
sampling experiments based on Monte Carlo simulation. The following
procedure is suggested: |

i. From the model under consideration, generate N Monte Carlo

samples of size n.

2. Estimate © for each of the N samples using the available

estimators.

- N .
E(E) = I ei/N (3.4)
i=1
2 L ~ 2
STD"(8) = I [ei - E(8)1°/(X-1) (3.5)
i=1

Having estimated the expectation and variance, the BIAS and MSE of € can
be computed from (3.1) and (3.3).

3.3 Probability Models

3.3.1 Gumbel Distribution (EV1)

The cumulative distribution function (cdf) is given as:

F(x) = expl- expl- a(x-b)}] (3.6)
where 1/a and b are the scale and location parameters respectively. The
EV1l distribution represents the asymptotic distribution of maximum of
independent and identically distributed (iid) flood peaks, when they are
assumed to follow exponential distribution, and their occurrence
approaches infinity, and hence provides partial physical justification
to the flood phenomena.

-3.3.2 Llog Pearson Type 3 (LP3)

If Y(= 1n X) is distributed as a Pearson Type 3, then X is distri-

buted as an LP3 variable. The probability density function (pdf) of X



is given as:

1 In x-c,b-1 In x-c
f(x) = Tal=5 [ ) exp[- (-—a—)] (3.7

where a, b and ¢ are the scale, shape and location parameters respec-—
tively. It was recommended by the U.S. Water Resources Council (1981)
for flood frequency analysis.

3.3.3 Two Component Extreme Value Distribution (TCEV)

The pdf is given as

A1 AZ
f(x) = [g— exp (- x/el) t 5 exp (~ x/62)]
1 2

expl- Al exp (- x/el) - A2 exp (- x/62)], x>0
= exp(- Al - AZ)’ x =0 (3.8)
where Al > 0, A2 > 0, 62 > 61 > 0 are parameters. This distribution,

being a four-parameter distribution, is suitable for ;egional analysis
(Rossi, et al., 1984).
3.4 Estimators
The following estimators have been reported in the literature from
time to time:
1. Classical
a. ﬁethod of Moments (MOM)
‘b. Maximum Likelihood (MLE)
c. Least Squares (LEAS) |
2. Recent
a. Probability Weights Moments (PWM)
b. Entropy (ENT)
c. Incomplete Means (ICM)

d. Mixed Moments (MIX)



Each of these methods is based on a different philosophy and it is not
possible to compare their performance without undertaking detailed

simulation studies.
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Chapter 4

GUMBEL'S EXTREME VALUE 1 (EV1) DISTRIBUTION

4.1 Introduction

The EV1 or Gumbel distribution has been widely used and still
continues to be employed, particularly in developing countries. It is a
rather simple distribution involving only two parameters and lends
itself well to parameter estimation, particularly for small samples.

The explicit inverse form of the distribution facilitates
straightforward quantile estimation, once the parameters have been
estimated. |

The cumulative distribution function (cdf) of an extreme value
type 1 (EV1) or Gumbel random variable x is given by:

F(x) = exp[- exp{- a(x-b)}] (4.1)
where 1/a and b are respectively the scale and location parameters of
the distribution. The methods of moments, least squares, and maximum
likelihood estimation have been the classical methods to estimate the
parameters a and b and consequently to estimate the quantiles. However,
several relatively new methods have been developed and successfully
applied over the past few years. The method of probability weighted
moments, introduced by Greenwood, et al. (1979), was used by Landwehr
and Matalas (1979) to estimate Gumbel parameters and quantiles. Jowitt
(1979) suggested entropy estimators. The least squares estimators were
used by Chow (1953), and Lowery and Nash (1970) and have since been
applied to the EV1 distribution by Jain and Singh (1986). Houghton

(1978) introduced the method of incomplete means, which is easy to apply

for EV1 distribution. Similarly, the method of mixed moments used by
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Rao (1980, 1983) is straightforward and yields closed form algebraic
expressions for parameter estimators (Jain, 19865.

Here, the performance of the aforementioned methods has been
evaluated and compared using Monte Carlo simulation. This work is an
extension of the one by Landwehr and Matalas (1979), where the authors
used sampling experiments to compare the method of probability weighted
moments with the method of moments and maximum likelihood estimation in
two cases: purely random samples and serially correlated samples. The
present work is made comprehensive by including 211 methods that are
apparentlyv available to date.

Additionally, this work also addressed the question of bias correc-
tion for method of moments-quantile estimator. The moment estimator
has been widely used, owing to its simplicity. However, as investigated
by Matalas, et al. (1979) and Lettenmaier, et al. (1982) among others,
and also corroborated by this work, this estimator yields biased
estimates of the quantile.

Usually, selection of the best estimator is governed by the type of
the loss function which is a measure of the loss resulting from over or
under-design.  In certain situations of design, the loss function is
minimized by least-biased estimator. Moreover, the bias corrected
moment estimator of quantile, if not accompanied by a significant
worsening of the mean square error (MSE), can prove to be useful in
regional estimation procedures where, due to the large sample size, the
variance of the estimator is no longer the main contribution to its MSE.

Sampling experiments were used to arrive at a practically unbiased
moment-quantile estimator. This bias corrected estimator yielded nearly

unbiased estimates of the quantiles, even for samples of small size.
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Moreover, it did not entail any practical woréening of the MSE. 1Indeed,
as is shown by simulation, the MSE values obtained from the bias-
corrected estimator were close to those from the uncorrected estimator.
4,2 Agalzsis

The inverse form of (1) is given by

In(- 1n F)

%x(F) = b - "

(4.2)

where x(F) denotes the quantile of cumulative non-exceedence probability
F. It is noted that the return period of x(F) equals 1/(1-F). For
sample sizes n = 5, 10, 15, 20, 30, 50, 100, 1000, the parameters a and
b were estimated by the methods of moments (MOM), maximum likelihood
estimation (MLE), probability weighted moments (PWM), entropy (EKT),
mixed moments (MIX), least squares (LEAS), and incomplete means (ICM).
The quantiles x(F), for F = 0.05, . . . , 0.99, were then calculated
from (4.2).

The performance statistics of various estimators were estimated
through Monte Carlo sampling experiments, i.e., through generation of a
large number of synthetic samples for: (1) purely random process
(independent and identically distributed Gumbel random variables), and
(2) serially correlated process (with the first order serial correlation
coefficient of 0.5). These estimates are expected to be very close
approximations to the theoretical values owing to the large value of N
(= 50,000 for n=5, . . . ,100, and, = 10,000 for n = 1000).

The mean square error of all methods relative to that of MLE was
compared using the relative efficiency defined as:

MSE (6 |MLE)
MSE(Glother method)

EFF(a) = (4.3)
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A value of EFF(¢) < 1 implies that the method under consideration is

less efficient (i.e., has higher mean square error) compared to MLE and

vice versa.

4.3 Estimation of Parameters and Quantiles

The parameter estimation equations for various methods are

summarized as follows:

(1) MOM:

where

(2) MLE:

(3) PWM:

(4) ENT:

(5) LEAS:

a

o'

> o> > o>

o>

-~

b

/(6 - ox)

X - 0.57721/a

is

standard deviation.

I exp(- axi)

i

I exp(~ axi) -I x

exp (- axi)

i
L.ng L
a I exp(- axi)
In(2)
X -2z xi(n—i)/n(n—l)
x - 0.57721/a

0.55721 + 1ln[n/I exp(- ;Xi)]

X

same formula as for MLE

n

o X zi xi

-3 xi Iz

i

z xi)2 -n-*Z x2

X+ L zi/(n . ;)

i

(4.4)

(4.5)

(4.6)

4.7)

(4.8)

vhere z, = 1n[- 1n(Fp(xi)] is obtained from the plotting position

i

formula which defines the cumulative probability of non-exceedance

Fp(xi) for each data point x

i.

(6) MIX: a = 1.28255/0_
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(8) ICM: %, =b - =2+ [JIn J - J% 1n J/2

i
a(n-ni)

+ 32 1n3/6 -3 /264 ...],i=1, 2 (4.10)

where J = ln(n/ni), n is the sample size, and n, is the number of
observations on which the incomplete mean ii is calculated.
All the summations above were performed over i = 1 to n and the

sample statistics were calculated as:

x =1 xi/n (4.11)
oi =1 (x, - 22/ (n-1) (4.12)

Landwehr and Matalas (1979) performed their calculations with the biased
expression of oi, i.e., with n replacing n-1 in (4.12).

Having estimated parameters a and b, the respective quantiles can
be calculated from (4.2) as:

~

; =b - In(- 1In F)/; (4.13)

4.4 Comparison of Performance Statistics of the
Parameter and Quantiles. Estimators

4,4,1 Case 1l: Purely Random Process

The results of this case are shown in Tables 4.1-4.2.

4.4,1.1 Parameter Estimates

The MIX and ICM can be prima-facie rejected as unreliable esti-
mators of Gumbel parameters. MIX, while performing reasonably effi-
ciently for estimation of 'a', failed in providing even moderately
biased estimate of 'b', and thus resulted in highly inefficient estimate

of 'b'. ICM failed to provide satisfactory estimate for either 'a' or
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METHOD SAMPLE BIAS(A) STDLA) EFF.(A) BIAS(B) STD(B) EFF.(B)
SIZE

HoM 5 -0.360 0.778 1.139 ~0.051 0.485 1.017
MLE -0.434 0.806 1.000 -0.081 0.485 1.000
Pt -0.233 0.701 1.533 0.000 0.480 1.049
ENT : ~0.415 0.79%0 1.052 -0.083 0.485 0.997
LEA =-0.141 0.650 1.893 -0.019 0.484 1.032
MIX -0.360 0.778 1.139 -0.834 0.497 0.257
I -5.274 111.876 0.000 -0.468 0.874 0.246
Mot 10 -0.156 0.381 0.881 -0.028 0.341 0.9%91
MLE -0.167 0.349 1.000 -0.040 0.338 1.000
P -0.092 0.353 1.126 -0.001} 0.336 1.02¢
ENT -0.159 0.348 1.024 -0.040 0.338 0.996
LEA ~0.026 0.341 1.279 0.003 0.341 0.99%%
MIX ~0.156 0.381 0.881 ~0.884 0.371 0.126
b (o ] -0.532 1.489 0.060 -0.065 0.930 0.133
Mot 15 ~0.103 0.295 0.782 ~0.020 0.278 0.981
MLE -0.102 0.256 1.000 -0.026 0.275 1.000
Ph1 ~0.058 0.268 1.010 ~-0.001 0.274 1.015
ENT -0.097 0.258 1.004 -0.027 0.275 0.996
LEA ~-0.005 0.268 1.059 0.007 0.279 0.979
MIX ~-0.103 0.295 0.782 -0.902 0.309 0.084
It -0.280 0.623 0.163 ~-0.005 0.770 0.129
Hov 20 -0.076 0.249 0.739 ~0.015 0.239 0.974
MLE -0.074 0.211 1.000 ~-0.019 0.236 1.000
P -0.041 0.225 0.953 -0.000 0.235 1.010
ENT -0.069 0.213 0.995 ~0.019 0.236 0.996
LEA 0.004 0.231 0.938 0.010 0.241 0.966
MIX -0.076 0.249 0.739 -0.911 0.269 0.062
I -0.191 0.482 0.186 0.007 0.650 0.132
30 -0.051 0.200 0.688 -0.010 0.196 0.968
HMLE -0.047 0.165 1.000 ~0.013 0.192 1.000
PR -0.026 0.180 0.888 -0.000 0.192 1.005
-0.044 0.168 0.979 -0.013 0.193 0.995
LEA 0.009 0.190 0.812 0.0)0 0.197 0.957
HIX -0.051 0.200 0.688 ~0.921 0.225 0.04)

b (>, ] ~0.121 0.365 0.199% 0.005 0.502 0.147



TABLE 4.1 (CONTINUVED)

= - - - - - -~ - - - - - - - -

EFF.(A)

METHOD SAMPLE BIAS(A) STD(A)
SI1ze
HoMt 50 -0.030 0.156
MLE -0.027 0.126
PhM -0.015 0.139
ENT -0.025 0.129
LEA 0.012 0.151
MIX -0.030 0.156
I -0.069 0.269
418 of 75 -0.020 0.129
HMLE -0.017 0.104
PWM ~0.00% 0.115
ENT -0.016 0.106
LEA 0.011 0.126
MIX -0.020 0.129
I -0.043 0.214
Mot 100 -0.01¢ 0.113
HMLE -0.012 0.091
PHM -0.007 0.101
ENT ~-0.012 0.093
LEA 0.011 0.112
MIX -0.014 0.113
I -0.032 0.184
MoM 1000 =-0.000 0.048
MLE -0.000 0.043
PHM 0.000 0.045
ENT -0.000 0.043
LEA 0.004 0.048
MIX -0.000 0.048
I -0.002 0.065

P Tt T

0.657
1.000
0.846
0.968
0.722
0.657
0.215

0.652
1.000
0.835
0.967
0.689
0.652
0.231

0.653
1.000
0.832
0.966
0.678
0.653
0.243

0.798
1.000
0.928
1.000
0.811
0.7%4
0.439

-0.007
-0.008
-0.001
~0.008

0.008
-0.929

0.003

~0.004
~0.005
-0.000
-0.005

0.008
-0.932

0.003

-0.003
-0.004
~0.000
-0.004

0.007
-0.9349

0.002

-0.000
-0.001
~0.000
-0.001

0.001
-0.941
~-0.001

0.151
0.148
0.148
0.148
0.152
0.177
0.368

0.12¢
0.121
0.121
0.121
0.124
0.146
0.2%4

0.107
0.105
0.105
0.105
0.l08
0.129
0.252

0.034
0.033
0.033
0.034
0.034
0.051
0.077

0.960
1.000
1.002
0.995
0.947
0.024
0.161

0.955
1.000
0.999
0.995
0.942
0.016
0.16%

0.956
1.000
1.000
0.9%
0.943
0.012
0.174

0.956
1.000
0.999%
0.992
0.952
0.001
0.189

29
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'b' as reflected by its very high bias and standard deviation of 'a' and
high standard deviation of 'b'.

O0f the remaining five methods, the bias of 'a' showed the following

trend:
MLE > ENT > MOM > PWM > LEAS, for n = 5, 10
MOM > MLE > ENT > PWN > LEAS, for n = 15 - 50
MOM > MLE > ENT > LEAS > PWM, for n = 75, 100
LEAS > others » for m = 1000

The standard deviation of 'a' compared as:

MLE > ENT > MOM > PwWM > LEAS, for mn =5

MOM > PWM > MLE > ENT > LEAS, for n = 10

MOM > PWM = LEAS > ENT > MLE, for n = 15

MOM > LEAS > PWM > ENT > MLE, for n > 20
The efficiency of 'a' compared as:

LEAS > PWM > MOM > ENT > MLE, for n =5

LEAS > PWM > ENT > MLE > MOM, for n = 10, 15

MLE > ENT > PWM > LEAS > MOM, for n > 20
where '>' means that the method on the left hand side of > has a bigger
statistic (bias, standard deviation, or efficiency) then the method on
the right hand side.

From the above trends, it appears that for rather small samples
(n £ 15), LEAS is the preferred method for estimating 'a'. Table 4.1
also reveals that as n increases, the efficiency of estimating 'a' by
ENT remained close to 1.00, while the efficiency from other methods
reduced considerably.

In estimating 'b', PWM provided practically unbiased estimates.

Analyzing the bias, standard deviation and the efficiency in much the
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same way as for 'a', it can be easily concluded that PWM provided
superior estimates of 'b' for the entire sample range considered.

4.,4.1.2 Quantile Estimates

PWM provided unbiased quantile estimates for ail n and F. MOM
provided estimates with lower bias than MLE and ENT. ENT resulted in
slightly less bias than MLE, while LEAS produced more bias than MLE for
all n except for n = 5. MIX and ICM again failed to provide satisfac-
tory estimates of quantiles compared to other estimators because their
lower bias was deteriorated by high standard deviation and vice versa,
thus resulting in low efficiencies of estimates compared to MLE
estimates.

The standard deviation of quantile estimates, while decreasing for
increasing n, increased for higher non-exceedance probabilities, F, as
expected from (4.2). MLE resulted in lowest standard deviation closely
followed by ENT. MOM had slightly higher standard deviation than PWM
for nearly all n and F. LEAS estimates showed higher standard deviation
than MOM, although the difference reduced as n increased.

MLE estimates were most efficient, closely followed by ENT esti-
mates. The PWM estimates proved to be more efficient than MOM esti~
mates, though less efficient than ENT estimates.

4,4,2 Case 2: Serially Correlated Process

Tables 4.5-4.8 summarize the results for this case.

4.4,2,1 Parameter Estimates

When the samples were generated from a serially correlated process
but assumed to be random for the purposes of estimation, all the esti-
mating methods produced significantly higher bias and standard deviatiqn
than the corresponding random process estimators (case 1). However,

LEAS consistently produced least bias of 'a' followed by PWM.
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. 0.967

0.979
1.050
0.778
0.235

0.733
1.000
0.916
0.969
0.944
0.733
0.256

STD(B) EFF.(B)
0.746 1.01¢6
0.748 1.000
0.737 1.061
0.748 1.001
0.742 1.040
0.601 0.608
1.025 0.439
0.556 1.000
0.555 1.000
0.550 1.033
0.555 1.000
0.552 1.02¢4
0.507 0.329
0.8%0 0.376
0.461 0.996
0.460 1.000
0.457 1.024
0.460 0.998
0.459 1.017
0.442 0.228
0.757 0.366
0.401 0.9%
0.400 1.000
0.398 1.018
0.400 0.997
0.400 1.012
0.396 0.173
0.666 0.359
0.330 0.9%0
0.329 1.000
0.328 1.012
0.329 0.997
0.330 1.003
0.334 0.118
0.556 0.350
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TABLE 4.5 (CONTINUED)

- 2 - e - - - " - o = - o T o - = T~ = -

METHOD SAMPLE BIAS(A) STD(A) *~ EFF.(A) BIAS(B) STD(B) EFF.(B)

S1ZE
Mot 50 -0.070 0.200 0.701 -0.022 0.259 0.986
MLE -0.058 0.168 1.000 -0.021 0.257 1.000
PHM -0.049 0.184 0.870 -0.014 0.256 1.007
ENT -0.057 0.172 0.960 -0.020 0.257 0.997
LEA B -0.026 0.193 0.834 -0.007 0.258 0.995
MIX -0.070 0.200 0.701 -0.915 0.266 0.073
I -0.125 0.319 0.269 -0.030 0.435 0.349
Mot ‘ 75 -0.046 0.164 0.687 -0.014 0.211 0.983
MLE -0.038 0.136 1.000 ~0.013 0.209 1.000
PHM -0.032 0.150 0.846 -0.009 0.209 1.005
ENT -0.037 0.140 0.954 -0.013 0.209 0.996
LEA -0.014 0.160 0.777 -0.003 0.211 0.988
MIX -0.046 0.164 0.687 -0.923 0.221 0.049
I -0.082 0.255 0.279 -0.019 0.354 0.349
mMort 100 -0.034¢ 0.144 0.683 -0.011 0.182 0.982
MLE -0.027 0.119 1.000 -0.010 0.181 1.000
PH -0.023 0.13) 0.839 -0.007 0.180 1.004
ENT -0.027 0.122 0.952 -0.010 0.181 0.99%6
LEA ~0.008 0.161 0.750 -0.002 0.182 0.986
MIX ~0.034 0.144 0.683 -0.928 0.1% 0.036
I -0.060 0.219 0.289 -0.014 0.306 0.349
Mot 1000 -0.003 0.056 0.764 -0.001 0.058 0.982
MLE -0.002 0.049 1.000 -0.001 0.058 1.000
PHM -0.002 0.052 0.886 -0.001 0.058 1.001
"ENT ~0.002 0.049 0.977 ~0.001 0.058 0.995
LEA 0.002 0.056 0.766 0.001 0.058 0.981
MIX -0.003 0.056 0.766 -0.940 0.070 0.004

pie, | ~0.005 0.074 0.426 ~-0.003 0.095 0.369
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From sample size 10 onwards, MLE, followed closely by ENT, gave
least standard deviation of 'a'. However, up to sample size n = 20,
LEAS resulting in comparable standard deviation produced estimates of
'a' with a higher efficiency than MLE. Hence, LEAS can be preferred for
such sample sizes.

For 'b', PWM was without doubt the superior method resulting in
less bias, least standard deviation and higher efficiency estimates.
Although LEAS resulted in lower bias than PWM for n > 15, it showed less
efficiency than PWM owing to its higher standard deviation. But it is
significant to note that the effect of serial correlation was to
markedly lower the performance deviation among the firét five methods.
In fact the first five methods performed to within 98 percent of the

efficiency of MLE method for estimating 'b'.

4,4,2.2 Quantile Estimates

The bias in quantile estimates also increased for serially
correlated samples as compared to purely random samples. LEAS provided
least biased estimates of the first fiﬁe methods for sample sizes 5 to
100. PWM provided the next lowest bias. MLE and ENT continued to
provide very close-biased estimates, although ENT produced slightly
lower bias. MOM provided lower bias than MLE for up to about n = 30,
bey&nd which MOM produced slightly higher bias than MLE. Quite in
contrast with other methods, the absolute bias resulting from MIX
increased with n for any given F.

MLE resulted in least standard deviation of quantile estimates
among the first five methods, even for n = 5, closely followed by ENT.
MOM gave lower standard deviation than PWM for n = 5 and 10 only, after

which mostly PWM produced lower standard deviation estimates. LEAS
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provided estimates with rather high standard deviation and this fact is
amply demonstrated in Table 4.8 in terms of efficiencies.

Except for n = 5, and some quantiles less than 0.5 for other n, MLE
turned out to be the most efficient method for serially correlated
samples, followed closely again by ENT. PWM provided the next higher
efficiency estimates mostly at all quantile values for all n except at
n = 5. MOM came next and LEAS provided the least efficient estimates.

4.5 Bias Correction in Quantile Estimates of MOM

Owing to its simplicity and ease of calculations, MOM has been
widely used as an estimator of EV1 distribution parameters. However,
MOM results in biased estimates as shown previously. The bias resulting
from MOM-quantile estimator can be corrected using simulation results as

follows:

From (4.2) and (4.13) we have,

~

x-x=b-£-1n(-1nF)-[-i--l] (4.14)
a
~ - . 1 1
E(x - x) = E(b -b) - In(- In F) E[; - =] (4.15)
a
But from (4.4)
oy Loorl 1
E(b - b) = - 0.57721 E[E - ] (4.16)
a
Substituting in (4.15)
E(x - ;) = - % * E[1 - &} » {(0.57721 + 1n(- 1n F))} (4.17)

a

E[1 - (a/a)] is the bias of the scaled random variable a/a. It is a

dimensionless quantity.

To investigate the bias of a/a as a function of the sample size and

the distribution parameters, three sets of sampling experiments were

carried out using N = 25,000 Monte Carlo samples of sizes n (= 5, 7, 10,
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15, 20, 30, 40, 50, 75, 100, 150 and 200). The random samples were

generated respectively from the following populations:

(1) a =1.00, b = 0.0
(2) a = 0.05, b = 100.0
(3) a=0.01, b = 200.0

The bias E[1 - (a/;)] was computed for various values of n in each para-
meter set. The results were plotted on a log-log plot and are shown in
Fig. 4.1. It is apparent from this figure that the bias of a/; is inde-
pendent of the population parameters from which it was computed and

depends only on the sample size n. The regression line is closely

fitted by the equation:

tr!
~
[
|
3
~
|
1]

2 f(n) (4.18)

where f(n) denoting the "true correction" is used in subsequent
discussion.

Using (4.18) in (4.17),

~

E(x - x) = -

o |+

* f(n) * [0.57721 + 1n(~ 1n F)] (4.19)

From (4.18) we can write

1

E[——-—) = = (4.20)

a(l - £(n)) 2
which implies that 1/[a(l - £(n))] is an unbiased estimator of 1/a.

Substituting (4.20) in (4.19) and simplifying, we get

Elx - {x - £(n) * [0.57221 + In(- 1n F)] * —L—}] = 0 (4.21)

a(l - £(n))
Hence by definition,

~
~ ~

x = x - £(n) * [0.57721 + 1n(- 1n F)] * w21 C(4.22)
a(l - £f(n))

is an unbiased (or corrected) estimator of x. It is henceforth denotgd

as CMOM estimator of quantile. Simplifying (4.22) further,
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; = % - % * [In(- In F) + {0.57721 + 1n(-~ 1n F} - i—iig%—— (4.23)
a o - £

and understandably enough the bias corrected quantile estimator is a
function of not only 'F' but 'n' also.

The bias and standard deviation of (4.23), with f(n) substituted by
the expression in (4.18), are shown in Tables 4.2 and 4.3 respectively,

against the method CMOM.

~
-

It is easy to see from (4.22) that the variance of x will be larger
than the varianée of ;. This is also corroborated by the results in
Table 3. The relative efficiency of CMOM quantile estimator (4.23) as
compared to the MOM estimator is shown in Table 4.9. Fig. 4.2 shows the

bias of original and corrected quantile estimators for 99.9 percent non-

exceedance probability. The results are typical of other probabilities

too.
4,6 Conclusions

Seven available estimators of EV1 distribution parameters and
quantiles were statistically compared using Monte Carlo sampling experi-
ments performed on two cases: a purely random process and a serially
correlated process. Additionally, a bias corrected MOM estimator of
quantile was also developed for purely random process. The corrected
estimator resulted in practically unbiased quantile estimates even for
very small sample sizes without causing any appreciable deterioration in
the mean square error (MSE).

With regard to the inter-comparison of parameter and quantile esti-
mators, some of the important conclusions are as follows:

(1) The methods of mixed moments and incomplete means resulted in

poor estimation of the parameters and the quantiles.
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Fig 4.1 : Bias, E(1 - (a/8)) versus sample size n for the EV1 Model
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The method of least squares provided minimum bias and maximum
efficiency estimate of the parameter 'a' for very small
samples and also provided competitive estimates of the para-
meter 'b'.

The maximum likelihood estimation method generally provided
most efficient quantile estimates followed closely by the
entropy method. In fact, ENT method performed practically in
the same manner as MLE.

For small samples, the method of probability weighted moments

and the method of moments performed comparably in efficiency

of estimating the quantiles. However, the efficiency of PWM
improved relative to MLE with increasing sample size. PWM
also resulted in nearly unbiased quantile estimates.

The incorporation of serial correlation in samples resulted in
deterioration of the performance of all estimators. However,

all the methods performed much more similarly in this case.



Chapter 5

LOG PEARSON TYPE 3 (LP3) DISTRIBUTION

5.1 Introduction

The objective of flood frequency analysis is to obtain an estimate
of T-year flood quantile at one or more locations in a river system.
The length of the available record 'n', if any, is typically'less than
the recurrence interval T. The quantile estimates are subject to vari-
ability on account of both model error and sampling error. Competing
estimators can yield estimates markedly differing in bias and mean
square error, the commonly used yardsticks to assess statistical perfor-

mance. Several studies have been reported in the literature comparing

nn LASN 3]

the performance of "at-site," "at-site/regional," "regional only" esti-
mators or combinations thereof. In a site-specific ffamework, a parent
distribution representative of real flood experience (Landwehr, et al.,
1980) is selected and several competing estimators based on specified
model distributions are used to estimate quantiles from the samples
drawn from the parent distribution. Landwehr, et al. (1980) used six
Wakeby distribution parents as the basis of testing the following
estimators: extreme value type 1 (EV1) distribution with method of
moménts (MOM), maximum likelihood estimation (MLE) and probability
weighted moments (PWM); and log normal 3 (LN3) with MOM and Wakeby (WAK)
distribution with PWM. Kuczera (1982b) considered the performance of
normal distribution with MLE;, LN2 with MLE and robust MOM, LP3 with MOM
applied to log-transformed data (referred to as indirect method of

moment (MMI), EV1 with MLE, PWM and MOM, Log-Gumbel with MOM, WAK with

PWM on four Wakeby parent distributions. In a more recent study, Wallis

54
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and Wood (1985) compared the performance of general extreme value (GEV)
with PWM, WAK with PWM, and log-Pearson type 3 (LP3) with MMI
conditioned on GEV, WAK and LP3 populations. While many more studies
have been reported, the ones mentioned above have LP3 with MMI figuring
as one of the competing estimators. The general conclusion of all these
studies seems to be that LP3 distribution with MMI depicts poorer
performance. This comes as a little surprise since LP3 distribution
being a three parameter model, its MMI quantile estimator depends on the
sample skewness estimate, a statistic with a significant downward bias
(Wallis, et al., 1974), algebraic bounds (Kirby, 1974), and large
sampling variance. Therefore, it is natural to search for better
quantile estimators of LP3 in order to make LP3-based estimators‘more
competitive in future robustness studies.

The objective of this study is to evaluate and compare the
performance of the quantile estimation methods of LP3 distribution. It
is worth noting that LP3 distribution being a 3 parameter model exhibits
more versatility than the 2-parameter constant skew models such as EV1
distribution. Theoretically, it is capable of modeling the large skew
and kurtosis behavior of annual flood series likely to be encountered in
practice. It would, therefore, seem natural to expect that an LP3
estimator, behaving robustly on different "coefficient of variation-
skewness" populations of LP3 distribution, would have a better chance of
performing satisfactorily on populations based on other distributions
such as Wakeby.

Much interest has been generated in the log-Pearson 3 distribution
since it was first recommended by the U.S. Water Resources Council

(USWRC) (1967), and subsequently updated (1975, 1977, 1981) as the base
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method of flood frequency analysis in the United States. Bobee (1975)
studied the theoretical properties of the LP3 distribution and suggested
an estimation method based on the moments of the real data whereas the
USWRC has advocated an estimation method based on the moments of the
log-transformed data. Condie (1977) studied the MLE estimates of the
LP3 distribution and derived analytical results for calculating the
asymptotic standard error of the MLE quantile estimator. Nozdryn-
Plotnicki, et al. (1979) carried out sampling experiments to compare the
performance of the three estimation methods over the LP3 parameter space
representative of Canadian flood data. Rao (1980b, 1983) proposed a new
method called method of mixed moments (MIX) which obviated the need to
use the sample estimates of the skewness coefficients in estimating the
parameters and quantiles via sample moment estimates. For the parameter
space considered by him, MIX has performed well in comparison to other
methods.

5.2 The LP3 Distribution

Let Y = 1nX be a Pearson type 3 variate. The density function of Y
is given by

b-1 |

g(y) = lallrb C P expl- (E9)) (5.1)

X, by definition, is log-Pearson 3 variate, and its density function,

easily derived from (5.1), is given by

1 . rln x-c,b-1 In x-c
f(x) = 1alxrb [ = ] exp|[- ——:;———] (5.2)

where a, b and ¢ are the scale, shape, and location parameters respec-
tively. The parameter b is positive and Pb denotes the gamma function.

The mean, variance, and skewness coefficient of Y are given by

Mean: uy = ¢ + ab (5.3)
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Variance: ba2 (5.4)

02=
y
Ll =7 (5.5)

The moments of X are given by

Skew: Y
vio Ty

u;:.e—x.&)b.,l..ra>o,r=l,2’3 (5.6)
(1-ra)

where u; denotes the r-th moment of X about the origin.
From (5.6) the mean, variance, coefficient of variation (CV),

skewness coefficient (skew), and kurtosis of X are given by

Mean: U = EER%EZ (5.7)
(1-a)
Variance: Gi = exp(2c) * A (5.8)
. .. b, ,1/2
Coefficient of Variation: B = (1-a) A (5.9)
_ 1 3
Skewness Coefficient: Y = | T - 5 5
(1-3a) (1-a) (1-2a)
I - : 35 a3/2 (5.10)
(1-a)
Kurtosis: A = [ 1 5 - b4 5 + 2b6 5
(1-43) (1-a) (1-3a) (1-a)" (1-2a)
- '—B—E] . A-2 (5.11)
(1-a)
where
A= 1 _ 1 ]

(1-22)°  (1-a)2P

We‘note that the coefficient of variation, skewness, and kurtosis are
independent of the location parameter c.

Consider equation (5.5). If a > 0, then Yy > 0 implying Y is
positively skewed and ¢ < Y < +*, 1In this case, X is also positively
skewed (Rao, 1980a), and exp(c) < X < +®, 1If a < 0, then Yy < O
implying that Y is negatively skewed and -® < Y < ¢. 1In this case, X is

either positively or negatively skewed depending upon the values of the
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parameters a and b, and = < X < exp(c). For this case, the density
f(x) = 0, may be arbitrarily defined as zero (Rao, 1980a).

The overall geometric shape of the LP3 distribution is governed by
the parameters a and b (Rao, 1980a; Bobee, 1975). The density function
is capable of assuming diverse shapes such as reverse-J, U, J, and of
course, unimodal (skewed) bell shape. Hoshi and Burges (1981) point out

that if v < 83 + 38 than a < 0, 0 < x < exp(c), A ALNS’ and vice

<
LP3
versa, where ALPB is the coefficient of kurtosis for the LP3 distribu-

tion (5.11), and AL is the coefficient of kurtosis for the three para-

N3
meter log normal (LN3) distribution. The LP3 distribution degenerates
to the log normal distribution when the parameters a and b become zero
and infinity respecitvely (or equivalently, when Y = 83 + 38 and Yy =

0).

5.3 Methods of Parameter Estimation

5.3.1 Method of Moments (Direct) - MMD

This method, proposed by Bobee (1975), uses the sample estimates of

moments of the untransformed (real) data. Using (5.6), we can write:

1n ui = ¢c-b 1n(1l-a) : (5.12)
in ué = 2¢~-b 1In(1-23) (5.13)
in ué = 3c-b 1n(1-33a) (5.14)

(5.12) - (5.14) can be rearranged to give:

v _ v
Inmug =310 ¥ 5 45(1-a) - 1n(1-3a)

In ué - 2 In Hy "~ 2 1In(1-a) - 1n(1-2a)

(= B say) (5.15)
For the sample under consideration, B = (1n ué -3 1n ui)/(ln ué -
2 1n ué) can be estimated from the sample estimates of the first three

n
moments ui, ué, ué about the origin (= oz 3 j=1, 2, 3).

]
g=1 1
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The right-hand side of (5.15), which is a function of the parameter a
only (say B(a)), reveals that a < 1/3. 1In the limit, B(a) approaches =,
3, and 2 as 'a' approaches 1/3, 0, and - respectively. It should be
possible to approximate the B(a) versus 'a' relation by a series of
polynomials, as for example in Kite (1977). Then a good approximation
of sample estimate of 'a' could directly be found from the sample esti-
mated value of B and should be good enough for most fitting problems.
However, for purposes of simulation, a large number of (a-B(a)) points
were generated in the region a < 1/3 (Bobee, 1975). Table 5.1 lists
some of these values. Subsequently, a sample estimate of 'a' was
interpolated corresponding to the sample estimated B value from the
generated a-B(a) points, and refined using the Newton-Raphson method
applied to (5.15). With the interpolated value of 'a' being a very good
starting solution, the iterative scheme quickly converged to the true
solution to any desired degree of significant digit accuracy. The
parameters 'b' and 'c' were then estimated using (5.12) and (5.13).

5.3.2 Method of Moments (Indirect) - MMI1 and MMI2

This is basically the method advocated by the U.S. Water Resources
Council. It is the method of moments applied to the log-~transformed
data. The method utilizes equations (5.3) - (5.5) for estimating the
parameters. Details of the method can be found in U.S. Water Resources
Council's Bulletin Nos. 15, 17A and 17B, Rao (1980b), and others. Two
variations of MMI were tested in simulation studies here. They essen-
tially differed in the sample skewness estimator used on the
log-transformed data:

n (xi - §)3

n
g B em———— z e err— (5.16)
y (nfl)(n-2) =1 S: :
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TABLE 5.1 : TABLE FOR ESTIMATING SCALE PARAMETER 'A'
DIRECT METHOD OF MOMENTS (MMD)
......................... Hemommccecmem e e reeH e e e ———————
A B * A B * A B
-4000.00000 2.03784 * -0.00050 2.99900 * 0.11111 3.30930
-3000.00000 2.03932 * ~0.00040 2.99920 * 0.12500 3.36624
-2000.00000 2.04162 * -0.00030 2.99940 * 0.13333 3.40343
~1000.00000  2.04623 * -0.00020 2.99960 * 0.14006 3.43528
-500.00000 2.05195 * -0.00010 2.99980 * 0.14045 3.43720
~-250.00000 2.05923 * -0.00005 2.99990 * 0.14085 3.43914
-200.00000 2.06201 * -0.00001 2.99998 * 0.14124  3.44109
-125.00000 2.06873 * 0.00000 3.00000 * 0.14164 3.44306
-100.00000 2.07242 * 0.00001 3.00002 * 0.14205 3.44505
-50.00000 2.08654 * 0.00005 3.00010 * 0.14225 3.44605
~25.00000 2.10634 = 0.00010 3.00020 * 0.14265  3.44807
-12.50000 2.13498 * 0.00020 3.00040 * 0.14306 3.45010
-10.00000 2.14684 * 0.00030 3.00060 * 0.14327 3.45113
-5.00000 2.19521 * 0.00040 3.00080 * 0.14368 3.45319
-2.50000 2.26716 * 0.00050 3.00100 * 0.14409 3.45527
-2.00000 2.29663 * 0.00060 3.00120 * 0.14443 3.45695
-1.25000 2.36969 * 0.00070 3.00140 ® 0.14455 3.45759
-1.00000 2.40942 * 0.00080 3.00160 * 0.14472 3.45843
-0.50000 2.54794 * 0.000%80 3.00180 * 0.14684  3.46929
~0.40000 2.59470 * 0.00100 3.00200 * 0.15129 3.49264
-0.33333 2.63252 * 0.00125 3.00251 * 0.15601 3.51846
-0.25000 2.69009 * 0.00167 3.00335 * 0.16103  3.54716
-0.20000 2.73193 * 0.00200 3.00402 * 0.16367 3.56275
-0.12500 2.80904 * 0.00250 3.00503 * 0.16920 3.59680
~0.10000 2.83972 * 0.00333 3.00672 * 0.17513 3.63528
-0.06667 2.88561 * 0.00400 3.00808 * 0.18149 3.67915
-0.05000 2.91106 * 0.00500 3.01013 * 0.18484  3.70348
-0.04000 2.92725 * 0.00667 3.01356 * 0.19194 3.75786
-0.03333 2.93845 * 0.00800 3.01632 * 0.19569 3.78839
-0.02500 2.95293 * 0.01000 3.02051 * 0.20367 3.85765
-0.02000 2.96190 * 0.01111 3.02286 * 0.20790 3.89715
~0.01667 2.96800 * 0.01250 3.02581 * 0.21692 3.98852
-0.01250 2.97576 * 0.01400- 3.02878 * 0.22173 4.04177
=0.01111 2.97838 * 0.01667 3.03478 * 0.22676 4.10126
-0.01000  2.98049 * 0.02000 3.04211 * 0.23202 4.16819
-0.00800 2.98431 * 0.02222 3.04706 * 0.23753  4.24411
-0.00500 2.99012 * 0.02500 3.05334 * 0.24331 4.33101
-0.00400 2.99208 * 0.02941 3.06351 * 0.24938  4.43154
-0.00333 2.99339 * 0.03030 3.06559 * 0.25575  4.54934
-0.00250 2.99503 * 0.03333 3.07275 ¥* 0.26247  4.68948
-0.00200 2.99602 * 0.04000 3.08893 * 0.26954  4.853935
-0.00125 2.99751 * 0.05000 3.11437 * 0.27701 5.07016
-0.00100 2.99800 * 0.06667 3.16024 * 0.28490 5.33998
-0.00090 2.99820 * 0.07692 3.19087 * 0.29326 5.70016
-0.00080 2.99840 * 0.08333 3.21106 * 0.30211 6.21160
-0.00070 2.99860 * 0.09091 3.23603 * 0.31153 . 7.01497
-0.00060 2.99880 * 0.10000 3.26772 * 0 8

.32154

.56194

NOTE : B = ( 3 * IN(1-A) -

IN(1-3*%A) ) / ( 2 * LN(1-A) :IN(I-Z*A) )

—
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g; = (1 + §g§) y gy (5.17)

where n is the sample size, and x and Sx are the sample mean and
standard deviation respectively.

5.3.3 Method of Mixed Moments - MIX

Rao (1980b, 1983) proposed this method with the objective of
obviating the use of the sample skewness coefficient in parameter esti-
mation. He tried various combinations of mixing the first two moments
of the untransformed and log-transformed samples and found one parti-
cular combination to be preferable on the basis of sampling properties.
The method, referred to here as MIX, is outlined below. A simple pro-
cedure, that directly finds the parameters and thus eliminates the need
for iterative approach, is also proposed. The practicing hydrologists
should find the proposed procedure useful in estimation of parameters by
MIX.

MIX conserves the sample mean and variance of the untransformed
data, and the sample mean of the log~transformed data. Let X, si, § be
the sample estimates of mean and variance of the untransformed data, and
mean of the log-transformed data respectively. Therefore, using (5.3),
(5.7), and (5.8) with population statistics replaced by the sample esti-

mates, the MIX parameter estimation equations are:

y =c + ab (5.18)

%= M% (5.19)
(1-a)

si = exp(2c) * [ 1 - 1 ] V (5.20)

(1-2a)®  (1-a)%P
From (5.18) and (5.19), we can write:

y - 1n x = bla + 1n(1-a)] (5.21)
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From (5.19) and (5.20), we can write:

32 + §2

In(——=—) = 2b In(l-2) - b 1n(1-2a) (5.22)
X
Combining (5.21) and (5.22),

2 In(l-a) - 1n(1-2a) _
In(1-3a) + a

P (5.23)

where P = 1n[(si + §2)/§2]/(§ - 1n X) can be found from sample estimated
= 2
s Yo SX.

The "left-hand side" of (5.23) depends only on "a" and is defined
for a < 1/2. It can be easily shown from (5.23) that P approaches =-=,
-2, and 0 as "a" approaches 1/2, 0 and -=» respectively. P is a smooth
function over the domain a < 1/2.

n_n
a

It should be possible to approximate P versus by a polynomial

'a" from

function in a manner amalogous to MMI (Kite, 1977) and estimate '
the approximated polynomial. However, for purposes of simulation, an
a-P table was geherated for large number of values of a < 1/2 by making
use of (5.23), and "a" was estimated by interpolating from this table.
Table 5.2 presents a sample a-P table. For most engineering problems,
this estimate should be sufficiently accurate, and if need be, can be
further refined by the Newton-Raphson method applied to (5.23). Rao
(1983) has reported some problems with convergence, if a "good" starting

solution of "a"

is not used in the iterative scheme. The technique of
choosing the starting solution as the interpolated value as outlined
above, always leads to fast convergence to any desired degree of
accuracy. After having found the estimate of "a",‘estimates of "b" and

c" can be found from (5.21) and (5.18) respectively.
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TABLE 5.2 :  TABLE FOR ESTIMATING SCALE PARAMETER 'A'
METHOD OF MIXED MOMENTS (MIX)
......................... o U R
A P * A P * A P

-4000.00000 =-0.00190 * 0.00000 =2.00000 * 0.20367 =-2.81039
-3000.00000 ~0.00244 * 0.00001 -2.00002 * 0.22173 -2.92392
-2000.00000 -0.00347 * 0.00005 -2.00013 * 0.23753 -3.03270
-1000.00000 =-0.00626 * 0.00010 -2.00027 * 0.25575 =-3.17098
-500.00000 -0.01119 * 0.00020 -2.00053 * 0.26247 -3.22584
-250.00000 -0.01977 * 0.00030 =-2.00080 * 0.27701 -3.35293
-200.00000 -0.02369 * 0.00040 =-2.00107 ¥* 0.28490 =-3.42712
-125.00000 =-0.03451 * 0.00050 -2.00133 * 0.29326 -3.51013
-100.00000 =-0.04117 * 0.00060 =-2.00160 * 0.30211 -3.60366
-50.00000 -0.07052 * 0.00070 =-2.00187 * 0.31153 =-3.70990
-25.00000 ~-0.11887 * 0.00080 -2.00214 % 0.32154 -3.83172
-12.50000 ~-0.19675 * 0.00090 =-2.00240 * 0.33000 =-3.94245
-10.00000 =-0.23037 * 0.00100 -2.00267 * 0.34000 -4.08398
-5.00000 =-0.36956 * 0.00125 =-2.00334 * 0.35000 =4.23860
-2.50000 =-0.57228 * 0.00167 =2.00445 * 0.36000 ~-4.40844
-1.25000 -0.84064 * 0.00200 =-2.00535 * 0.37000 =4.59608
-1.00000 =-0.93752 * 0.00250 -2.00669 * 0.38000 =-4.80482
-0.50000 =-1.24592 * 0.00333 -2.00893 * 0.39000 -5.03886
-0.40000 -1.34048 * 0.00400 -2.01073 * 0.40000 -5.30371
-0.25000 =-1.52001 * 0.00500 =-2.01344 * 0.40500 =-5.44989
-0.20000° =-1.59352 * 0.00800 =-2.02161 * 0.41000 -5.60671
-0.10000 -1.76954 * 0.01000 -2.02709 * 0.41500 =-5.77555
-0.05000 -1.87641 * 0.01250 -2.03401 * 0.42000 -5.95802
-0.04000 -1.89966 * 0.01389 =-2.03787 * 0.42500 -6.15608
-0.02500 =-1.93587 * 0.02000 -2.05508 * 0.43000 =-6.37210
-0.02000 ~-1.94830 * 0.02500 -2.06942 * 0.43500 =-6.60903
-0.01250 =-1.96731 * 0.02941 -2.08227 * 0.44000 =-6.87053
-0.01000 =-1.97375 * 0.03030 -2.08489 * 0.44500 -7.16128
-0.00800 =-1.97893 * 0.03333 -2.09386 * 0.45000 -7.48738
-0.00500 -1.98677 * 0.04000 -2.11391 * 0.45500 -7.85688
-0.00400 =-1.98940 * 0.05000 =-2.14485 * 0.46000 -8.28086
-0.00250 =-1.99336 * 0.06667 =-2.19890 * 0.46500 -8.77498
-0.00200 ~-1.99468 * 0.07692 - -2.23381 * 0.47000 -9.36239
-0.00125 -1.99667 * 0.08333 -2.25631 * 0.47500 -10.07940
-0.00100 -1.99734 * 0.10000 -2.31741 * 0.48000 -10.98753
-0.00090 -1.99760 * 0.11111 -2.36039 * 0.48500 -12.20337
-0.00080 =-1.99787 * 0.12500 -2.41687 * 0.49000 -13.99187
-0.00070 -1.99813 * 0.13889 -2.47668 * 0.49500 -17.20950
-0.00060 =-1.99840 * 0.14104 -2.48628 * 0.49600 -18.27875
-0.00050 -1.99867 * 0.14306 =-2.49535 * 0.49700 -19.67587
-0.00040 -1.99893 * 0.14409 -2.50001 * 0.49800 -21.67429
-0.00030 -1.99920 * 0.14451 -2.50190 * 0.49900 -25.14880
-0.00020 -1.99946 * 0.14459 -2.50228 * 0.49910 -25.68150
-0.00010 -1.99973 * 0.14684 -2.51255 * 0.49920 -26.27815
-0.00005 -1.99987 * 0.15601 -2.55545 * 0.49930 -26.95593
-0.00003 -1.99992 * 0.16367 -2.59268 * 0.49940 -27.73999
-0.00001 -1.99997 * 0.18484 =-2.70271 * 0.49950 -28.66924

NOTE : P = ( 2 % IN(1-A) - IN(1-2%A) ) / ( IN(1-A) + A )
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5.3.4 Method of Maximum Likelihood Estimation ~ MLE

The MLE method in the context of LP3 distribution (or equivalently,
P3 with log-transformed data) has been investigated by Matalas (1973),
Condie (1977), Condie, et al. (1979), Nozdryn-Plotnicki (1979), and Rao
(1986), among others. The methods proposed by all the investigators,
except Rao (1986), essentially involve searching for the solution within
a limited range of parameter ¢, for example, (In Xdin " 0.1, 1n Xoin ~
50) for negative gy, and (1n X ox + 0.01, 1n X ox + 50) for positive gy,
where X in’ *pax Y€ the minimum and maximum values of the untransformed
sample, and gy is the estimated skewness coefficient of the log-
transformed sample. If no solution is found within this range of ¢, the
MLE estimation effort is comsidered a failure for the sample under
consideration. However, Rao (1986) carried out a thorough investigation
of MLE parameter estimation equations and found that, in general,
multiple (two or three) solutions of the MLE equations exist with two
solutions corresponding to ¢ * * and a third likely solution in the

vicinity of 'greater than 1ln x___" or "less than 1n x___ "

max min
this situation, a criterion is required to select the "best" MLE

regions. In

solution. Rao (1986) proposed a comparison of sample estimated and MLE
estimated means and variances as the criteria for selecting the best
solﬁtion.

In what follows, the method is briefly discussed, together with a
proposed algorithm to effect the multiple solutions. An objective
criterion, logically resulting from the maximum likelihood estimation
philosophy, for selecting the "best" MLE solution is also proposed.

Let (xl, Xps eoes xn) be a sample of size n, drawn from a probabil-

ity density function f(xj;a,b,c). The likelihood function is defined as
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n
L= 1 f(xi;a,b,c) (5.24)
i=1 ‘

From (5.24) and (5.2), the log-likelihood function can be written as

n
LL = I 1n f(x,;a,b,c)
" A i
i=1
=~-~nlna- I lnx-nln Fb
+ (b-1) Z In [(In x-c))/a] - (1/a) £ (1In x-c) (5.25)

and the summations are over n sample values wherever not specified.
The objective of the method is to maximize the likelihood function
(or equivalently, to maximize the log-likelihood function). Thus, the

following parameter estimation equations result:

giLL) =-nab+ZI (Inx-c) =0 (5.26)
géLL) = -n w(b) + T ln[(ln X"C)] =0 (5.27)
a
9(LL) _n _ _ S S
e "5 D I gty = 0 (5.28)
(5.26) and (5.28) can be rearranged (Rao, 1986) to give

s

a=— (5.29)

s, s

b = i » (5.30)

(sl s, = n )

where s, = £ (In x-¢) and s, = £ 1/(1n x-c).

1 2
For a specified value of c, parameters b and a can be explicitly
found from (5.30) and (5.29) respectively. Substitution of these a, b
and ¢ values in (5.27) yields 3(LL)/8b = R. Rao (1986) investigated the
variation of R with ¢ and came up with three general patterns of R

versus ¢ relationships. These cases are reproduced here in Fig. 5.1

from Rao's paper. For clarity, we note in Fig. 5.1 that before
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log-transforming, the samples were standardized by dividing Xy by X.

The range of ¢ investigated was - < ¢ < 1n(xmin/§) < 0, and 0 <
ln(xmaX/§) < ¢ <+, Similar investigations were made by the author and
the following observations are worth mentioning. (1) After steeply
falling (or rising), and possibly crossing the c-axis, R tends to be
very flat. 1In fact, if the calculations are not made in double
precision accuracy, R erroneously crosses the c~line at several points
in a decaying fashion. Apparently, this was the behavior observed by
Condie (1977) when he remarked about "several inflexion points" of R.
This oversight can obviously lead to erroneous solutioms. (2) A
"region 1 - positive c" solution, if it exists, excludes the possibility
of a "region 1 - negative c¢" solution and vice versa. In contrast, the
region 2 and region 3 solutions corresponding to ¢ > * always exist.

It is proposed that the solution maximizing the log-likelihood
function (5.25) is the "best' MLE solution. An investigation was made
into the variation of LL (5.25) with parameter c¢. It was found that
(1) a 'region-1' solution, if it existed, did not necessarily correspond
to a local maxima of LL. (2) The LL corresponding to c¢ * *® always
approached the -same numerical values. (3) A local maxima of LL
corresponding to a 'region-1' solution also proved to be a global
maxima. (4) The solution of ¢ maximizing LL, in general, provided
better MLE estimates of the mean and variance than the ones satisfying
(5.26) -~ (5.28) but not maximizing LL in the domain of parameter c.
Based on these findings, the following procedure was employed to find
the MLE parameter estimates in simulation studies. Let the pqpulation

c>0
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Step (1): Search for ¢ in the range [ln(xmax/§) + 0.01,
1n[xmax/§) + 50]. 1If it exists, find it by regula-falsi
method, and calculate the corresponding LL. If LL is a
local maxima, STOP. ¢ is the MLE solution. If ¢ does
not exist, go to step (2).

Step (2): Search for c in the range [1n(xmax/§) - 0.01,
ln[xmaxli) - 50]. If it exists and is a local maxima,
STOP. MLE solution is found. Else, go to step (3).

Step (3): find ¢y + #°, corresponding to IR‘ < 10_9. This is the
MLE solution.

For population ¢ < 0, a complementary procedure was followed.

5.3.5 Method of Entropy - ENT

Singh and Singh (1985) used the concept of entropy to derive a new
set of estimation equations for the Pearson type III distribution. The
parameter estimation equatiomns, with theoretical expectations replaced

by sample moments are

Z(1n x-c) = mnab (5.31)
si = a% (5.32)
5 1n[33—§231 = ¥ (b) (5.33)

where S; is the sample variance estimate from the log-transformed data.
It is interesting to note that the two equations of this system, namely
(5.31) and (5.33), are exactly identical to the two MLE equations,
namely (5.26) and 5.27). The third equation (5.32) appears to be
simpler than the corresponding (5.28). 1In fact, (5.32) is the same as
(5.4) which is also used in MMI.

The system (5.31) - (5.33) offers similar computational problemsvas

MLE. (5.31) requires that I(ln x-c) and a should have the same signs.
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Therefore, a is positive, if ¢ < 1ln Xy that is, ¢ is a lower bound, and
vice versa. (5.31) (or (5.32)) allows for b > 0, whereas (5.28) of MLE
requires b > 1. Therefore, the ENT system of equations is less
restrictive than MLE system.

Equations (5.31) - (5.33) have multiple roots. After rearranging,
the equations can be written as,

a=t sy//E (5.34)

c =y sy /b (5.35)
Hence, for every value of b, we have two possible values of a and c.
The ENT solution was obtained by following similar procedure as in the

case of MLE.

5.4 Quantile Estimation

Let

- 1n X-c
a

W (5.36)

W is the standard gamma variate with shape parameter b (and scale

parameter 1) having the density function

w) = &xpl= W) w1 (5.37)
g T(b) ’ .

Thus, the cumulative distribution function F(x) of the LP3 variate X can
be expressed as

F(x) = Prob(X < x)

In X~c 1n x-c
< ]

Prob| 5

, a>0

In X-c in x-c
> ]

Prob| =

’ a < 0 (5‘38)

That 1is,

G(Wx) »a>0 ‘
F(x) = ; (5.39)
1 - G(w*), ac<0 '
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where G(wX) is the cumulative distribution function of the standard

Gamma variate W defined as

w

=5 % - Ain x-c
G(wx) = fo g(w) dw, w_ =

X S (5.40)

Therefore, the T~year return period quantile, Xp» can be obtained from:
Inx,  =c+aw (5.41)

where Vip is a standard Gamma quantile corresponding to a non-exceedance

probability [G(wT)] of (1 - 1/T) for a > 0, or 1/T for a < 0. Wy can be

written as

bl/ 1/2

2
wp = (KT + b ) (5.42)
where KT is the frequency factor corresponding to the same probability
level as WT. Using (5.42), we can write (5.41) as
_ 1/2
In Xp = ¢ + ab + ab KT
Yy y T

KT depends on the probability level and the shape parameter b (or equi-
valently yy). Its values are tabulated in U.S. Water Resources Council
Bulletin 17 for Yy = ~-9.0 to 9.0 for a wide range of exceedance pro-
bability levels. The values of KT were interpolated from table and used
in (5.43) to obtain the quantile estimate X

5.5 Experimental Design

To assess the performance of various methods of estimation outlined
above, Monte Carlo sampling experiments were performed. Annual flood
data generally lie in the area of the R~y diagram delineated by 0.3 <
8 < 0.8 and y upward of 1 (Rossi, et al., 1986; Wallis, et al., 1985;

Landwehr, et al., 1978). Based on this consideration, five cases of LP3



population, representative of the real flood data were selected for

Monte Carlo experiments. These cases are listed in Table 5.3.

Table 5.3. (¢ = 1): LP3 population cases considered in sampling

71

experiments.
Parameter
LP3 cv Skew Y
Population ®) ) 7
a b c
Case 1 0.5 1 -0.11832 19.82269 2.216713 -0.45
Case 2 0.5 3 0.127683 10.30311 ~1.407434 0.62
Case 3 0.5 5 0.205678 3.215257 -0.740366 1.12
Case 4 0.3 3 0.150978 2.681889 -0.438946 1.22
Case 5 0.7 3 0.059798 98.38009 -6.066213 0.20

It is noted here by A 1 ALNB < A 5 < 12 < Aé < AB where the
subscripts of A refer to the LP3 population case.

For each of the population cases listed in Table 5.3, 1000 random
samples of size 10, 20, 30, 50 and 75 were generated and parameters and
quantiles estimated from methods of estimation outlined earlier.

The 1000 estimated values of estimated parameters and quantiles for

each sample size and population case were used to approximate the values

of the following performance indices for that case.

Standardized Bias, BIAS = §S§l§:—5 (5.44)

Standard Error, SE = Gix) (5.45)
° 2.1/2

Root Mean Square Error, RMSE = El(x =~ x) ] (5.46)

b.9
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~

where x is an estimator (parameter or quantile) of x, E(*) denotes
statistical expectation, and c({) denotes standard deviation of the

respective random variable. E(x) and o (x) were calculated as

~

E(x) (5.47)

]
Z|M

o) = Ighy pix - EGy 212 (5.48)

~

where the summations are over N estimates x of x, N being the number of
random samples used in estimation (= 1000 here).
It is easy to write

2 1/2

RMSE = [I%l SEZ + BIAS?] (5.49)

Due to the limited number of random samples used, the results are
not expected to reproduce the true values of BIAS, SE and RMSE, but they
do provide a means of comparing the performance of various estimation
methods.

(5.36) was used to facilitate the generation of LP3 random numbers.
To start with, standard Gamma numbers, WR’ were generated through Gamma
generator GGAMR (IMSL, 1981). Then the corresponding LP3 numbers, XR,
were obtained as

X = exp(a Wp + c) (5.50)

5.6. Results and Discussion

In general, unusually high BIAS, SE and RMSE were observed for
parameter estimators ;, g and ; of all methods. However, the inter-
correlation among the parameter estimates was such that reasonable
quantile estimates were obtained. Tables 5.4-5.8, 5.9-5.13, and
5.14-5.18 show the BIAS, SE and RMSE of quantile estimate for five

population cases respectively.
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TABLE 5.4
BIAS OF SELECTED QUANTILES
(CASE - 1: C.V.= 0.5 SKEW= 1.0)
RETURN PERIOD
SAMPLE =-==-----cecmcccccmmcmecccmmccccceeemeeeeeccmecccmeceaa-
METHOD SIZE 10 25 50 100 200 500
MMD 10 -0.038 -0.082 -0.111 -0.136 -0.158 -0.183
MMI1 10 -0.005 0.015 0.039 0.069 0.107 0.168
MMI2 10 -0.045 -0.037 -0.012 0.030 0.090 0.206
MIX 10 -0.036 -0.030 -0.019 -0.004 0.015 0.045
MLE 10 -0.009 0.030 0.068 0.111 0.161 0.236
ENT 10 -0.047 -0.096 -0.127 -0.155 -0.179 -0.206
MMD 20 -0.018 -0.045 -0.063 . -0.078 -0.092 -0.108
MMI1 20 -0.003 0.009 0.023 0.040 0.061 0.094
MMI2 20 -0.021 -0.022 -0.015 -0.003 0.015 0.047
MIX 20 -0.020 -0.018 -0.012 -0.004 0.006 0.024
MLE 20 -0.012 . -0.005 0.009 0.030 0.058 0.108
ENT 20 -0.029 -0.061 -0.082 -0.101 -0.118 -0.139
MMD 30 -0.011 -0.030 -0.043 -0.055 -0.066 -0.077
MMI1 30 -0.002 0.009 0.021 0.035 0.051 0.077
MMI2 30 -0.013 -0.012 -0.007 0.001 0.013 0.034
MIX 30 -0.014 -0.012 -0.007 -0.001 0.006 0.019
MLE 30 -0.011 -0.009 -0.001 0.011 0.029 0.061
ENT 30 -0.021 -0.043 -0.058 -0.072 -0.084 -0.099
MMD 50 -0.005 -0.017 -0.026 -0.034 -0.041 -0.050
MMI1 50 0.000 0.008 0.015 0.024 0.035 0.051
MMI2 50 -0.006 -0.006 ~0.004 0.000 0.006 0.017
MIX 50 -0.007 -0.006 -0.003 0.000 0.005 0.012
MLE 50 -0.008 -0.011 -0.011 -0.009 -0.005 0.004
ENT 50 -0.011 -0.025 -0.034 -0.043 ~ -0.051 -0.060
MMD 75 -0.002 -0.011 -0.018 -0.024 -0.030 -0.036
MMI1 75 0.001 0.006 0.012 0.018 0.026 0.037
MMI2 75 -0.003 -0.003 -0.002 0.001  0.005 0.012
MIX 75 -0.004 -0.003 -0.002 0.000 0.003 0.008
MLE 75 -0.005 -0.007 -0.008 -0.007 -0.005 -0.001

ENT 75 -0.007 -0.016 -0.023 -0.029 -0.034 -0.040
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TABLE 5.5
BIAS OF SELECTED QUANTILES
( CASE - 2 : C.V. = 0.5 SKEW = 3.0 )
RETURN PERIOD

SAMPLE ==-=----cscccmmccccnocrccccc e e e e e

METHOD SIZE 10 25 50 100 200 500
MMD 10 -0.004 -0.078 -0.136 -0.192 -0.247 -0.315
MMI1 10 -0.001 0.000 0.012 0.035 0.072 0.152
MMI2 10 -0.016 0.027 0.096 0.212 0.402 0.863
MIX 10 -0.025 -0.054 -0.074 -0.092 -0.108 -0.126
MLE 10 -0.030 -0.076 -0.108 -0.138 -0.166 -0.197
ENT 10 0.011 0.062 0.115 0.183 0.268 0.413
MMD 20 0.003 ~0.050 -0.093 -0.136 -0.178 -0.232
MMI1 20 -0.007 -0.010 -0.008 0.000 0.015 0.047
MMI2 20 -0.009 0.010 0.037 0.077 0.134 0.245
MIX 20 -0.018 -0.045 -0.063 -0.080 -0.095 -0.112
MLE 20 -0.010 -0.010 -0.004 0.010 0.031 0.073
ENT 20 0.001 0.026 0.052 0.085 0.123 0.186
MMD 30 0.010 -0.035 -0.071 -0.109 -0.146 -0.193
MMI1 30 -0.004 -0.007 -0.006 -0.001 0.009 0.029
MMI2 30 -0.003 0.008 0.025 0.049 0.082 0.143
MIX 30 -0.011 -0.034 -0.051 -0.066 -0.080 -0.096
MLE 30 -0.000 0.010 0.024 0.043 0.068 0.111
ENT 30 0.002 0.019 0.035 0.056 0.080 0.119
MMD 50 0.016 -0.018 -0.047 -0.077 -0.107 -0.146
MMI1 50 0.000 -0.001 0.001 0.005 0.012 0.027
MMI2 50 0.001 0.009 0.020 0.035 0.055 0.090
MIX 50 -0.004 -0.022 -0.034 -0.046 -0.056 -0.068
MLE 50 0.004 0.017 0.031 0.047 0.068 0.101
ENT . 50 0.004 0.015 0.026 0.039 0.053 0.076
MMD 75 0.017 -0.010 -0.034 -0.058 -0.083 -0.116
MMI1 75 0.000 0.001 0.002 0.006 0.012 0.023
MMI2 75 0.001 0.008 0.016 0.026 0.040 0.063
MIX 75 -0.002 -0.016 -0.025 -0.034 -0.042 -0.050
MLE 75 0.003 0.013 0.022 0.034 0.048 0.069
ENT 75 0.003 0.011 0.019 0.029 0.040 0.058
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TABLE 5.6
BIAS OF SELECTED QUANTILES
( CASE - 3 : C.V. = 0.5 SKEW = 5.0 )
RETURN PERICD

SAMPLE =~-------ccccccccccc e r e e e eec e

METHOD SIZE 10 25 50 100 200 500
MMD 10 0.009 -0.077 -0.146 -0.214 -0.280 -0.362
MMI1 10 -0.001 -0.008 -0.002 0.017 0.054 0.138
MMI2 10 -0.022 0.025 0.104 0.241 0.474 1.062
MIX 10 -0.019 -0.063 ~0.095 -0.127 -0.156 -0.193
MLE 10 -0.031 -0.109 -0.167 -0.222 -0.274 -0.338
ENT 10 0.004 0.021 0.047 0.087 0.144 0.259
MMD 20 0.017 ~0.046 -0.100 -0.154 -0.207 ~0.275
MMI1 20 -0.007 -0.016 -0.017 -0.011 0.003 0.040
MMI2 20 -0.013 0.008 0.041 0.093 0.169 0.326
MIX 20 -0.012 -0.050 -0.079 -0.107 -0.133 -0.165
MLE 20 -0.011 -0.043 -0.064 -0.081 -0.095 -0.105
ENT 20 -0.004 -0.008 -0.007 -0.003 0.005 0.023
MMD 30 0.026 -0.027 -0.073 -0.120 -0.167 -0.229
MMI1 30 ~0.005 -0.011 -0.010 -0.005 0.008 0.037
MMI2 30 -0.008 0.008 0.031 0.066 0.116 0.212
MIX 30 ~0.006 ~0.038 -0.063 -0.087 -0.109 -0.137
MLE 30 -0.000 -0.008 -0.012 -0.012 -0.009 0.001
ENT 30 -0.002 -0.008 -0.009 -0.009 ~0.006 0.002
MMD 50 0.032 -0.011 -0.048 -0.088 -0.129 -0.182
MMI1 50 -0.001 -0.004 -0.004 0.001 0.010 0.031
MMI2 50 -0.002 0.008 0.023 0.044 0.073 0.128
MIX 50 0.001 -0.025 ~0.045 -0.065 -0.084 -0.106
MLE 50 0.008 0.015 0.023 0.034 0.048 0.070
ENT - 50 0.000 -0.007 -0.012 -0.016 -0.018 -0.019
MMD 75 0.034 -0.000 -0.032 -0.065 -0.100 -0.146
MMI1 75 0.000 -0.001 0.001 0.005 0.013 0.029
MMI2 75 -0.000 0.008 0.019 0.035 0.055 0.091
MIX 75 0.003 -0.017 -0.033 -0.048 -0.063 -0.080
MLE 75 0.008 0.018 0.028 0.039 0.053 0.074
ENT 75 0.001 -0.006 -0.010 -0.013 -0.015 -0.016



TABLE 5.7

BIAS OF SELECTED QUANTILES

( CASE - 4 : C.V. = 0.3 SKEW = 3.0 )
RETURN PERIOD
SAMPLE ~=--s-sec-moemcmc o mmrn e
METHOD SIZE 10 25 50 100 200 500
MMD 10 -0.011 -0.067 -0.111 ~0.156 -0.199 -0.255
MMI1 10 -0.006 -0.020 -0.026 -0.028 -0.024 -0.007
MMI2 10 -0.021 0.002 0.039 0.097 0.184 0.367
MIX 10 -0.021 -0.041 -0.056 -0.069 -0.080 -0.094
MLE 10 -0.025 -0.083 -0.128 -0.172 -0.214 -0.268
ENT 10 -0.004 -0.011 -0.013 -0.013 -0.009 0.003
MMD 20 -0.004 -0.046 -0.080 -0.115 -0.149 -0.193
MMI1 20 -0.008 -0.020 -0.027 -0.030 -0.030 -0.024
MMI2 20 -0.013 -0.004 0.012 0.036 0.069 0.133
MIX 20 -0.015 -0.035 -0.051 -0.065 -0.078 -0.094
MLE 20 -0.014 -0.047 -0.072 -0.097 -0.121 -0.149
ENT 20 -0.007 -0.020 -0.030 -0.038 -0.044 -0.051
MMD 30 0.003 -0.031 -0.059 -0.088 -0.117 -0.154
MMI1 30 -0.005 -0.013 -0.017 -0.018 -0.016 -0.007
MMI2 30 -0.008 -0.001 0.011 0.028 0.053 0.098
MIX 30 -0.008 -0.026 -0.038 -0.051 -0.062 -0.075
MLE 30 -0.005 -0.024 -0.039 -0.054 -0.067 -0.082
ENT 30 -0.004 -0.019 -0.029 -0.039 -0.049 -0.059
MMD 50 0.008 -0.018 -0.039 -0.062 -0.084 -0.114
MMI1 50 -0.002 -0.006 -0.008 ~0.007 -0.004 0.003
MMI2 50 -0.004 0.002 0.011 0.023 0.038 0.066
MIX 50 -0.004 -0.016 -0.026 -0.035 -0.043 -0.052
MLE 50 -0.000 -0.013 -0.022 -0.031 -0.039 -0.048
ENT . 50 -0.002 -0.017 -0.028 ~0.039 -0.049 -0.062
MMD 75 0.010 -0.010 -0.028 -0.046 -0.065 -0.090
MMI1 75 -0.000 -0.002 -0.003 -0.002 0.001 0.007
MMI2 75 -0.001 0.004 0.010 0.019 0.030 0.049
MIX 75 -0.001 -0.011 -0.018 -0.025 -0.031 -0.038
MLE 75 0.003 -0.003 -0.007 -0.010 ~-0.013 -0.016

ENT 75 -0.001 -0.015 -0.026 -0.036 -0.047 . -0.060
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~ TABLE 5.8
BIAS OF SELECTED QUANTILES
( CASE - 5 : C.V. = 0.7 SKEW = 3.0 )
RETURN PERIOD

SAMPLE ~-------------------crrrmcecccccnccecccmcmm e e e e

METHOD SIZE 10 25 50 100 200 500
MMD 10 0.004 -0.088 -0.159 -0.227 -0.291 -0.369
MMI1 10 0.006 0.023 0.053 0.101 0.172 0.317
MMI2 10 -0.018 0.034 0.124 0.282 0.554 1.263
MIX 10 -0.031 -0.069 -0.094 ~0.115 -0.134 =0.155
MLE 10 ~0.028 -0.050 -0.061 -0.069 -0.073 -0.072
ENT 10 0.040 0.164 0.293 0.460 0.678 1.075
MMD 20 0.009 -0.057 -0.110 -0.162 -0.212 -0.274
MMI1 20 -0.005 -0.002 0.007 0.023 0.046 0.090
MMI2 20 -0.009 0.007 0.034 0.075 0.133 0.244
MIX 20 -0.024 -0.057 -0.080 -0.099 -0.117 -0.135
MLE 20 -0.013 ~0.003 0.020 0.057 0.111 0.216
ENT 20 0.018 0.084 0.147 0.221 0.308 0.446
MMD 30 0.017 -0.037 -0.081 -0.125 -0.167 -0.221
MMI1 30 .=0.003 -0.002 0.005 0.016 0.032 0.062
MMI2 30 -0.004 0.006 0.023 0.047 0.081 0.143
MIX 30 -0.016 -0.044 -0.062 -0.079 -0.09%4 -0.109
MLE 30 -0.006 0.009 0.032 0.066 0.113 0.200
ENT 30 0.015 0.063 0.108 0.161 0.221 0.313
MMD 50 0.025 -0.015 -0.050 -0.085 -0.120 -0.165
MMI1 50 0.002 0.004 0.009 0.017 0.029 0.051
MMI2 50 0.002 0.009 0.019 0.034 0.055 0.092
MIX 50 -0.006 -0.026 -0.041 -0.053 -0.064 -0.076
MLE 50  -0.001 0.006 0.018 0.034 0.056 0.095
ENT 50 0.015 0.050 0.081 0.116 0.156 0.216
MMD 75 0.024 -0.006 ~0.032 -0.059 -0.087 -0.123
MMI1 75 0.002 0.005 0.009 0.015 0.024 0.040
MMI2 75 0.003 0.009 0.016 0.027 0.040 0.064
MIX 75 -0.003 -0.018 -0.028 -0.036 -0.044 -0.051
MLE 75 -0.001 0.005 0.012 0.021 0.034 0.056
ENT 75 0.011 . 0.038 0.061 0.087 0.115 0.158
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TABLE 5.9
STANDARD ERROR OF SELECTED QUANTILES
(CASE - 1 : C.v. = 0.5 SKEW = 1.0 )
RETURN PERIOD
SAMPLE =--=re=c-c--cccssommrmre e et et me s
METHOD SIZE = 10 25 50 100 200 500
MMD 10 0.181 0.198 0.212 0.227 0.243 0.263
MMI1 10 0.190 0.238 0.291 0.357 0.438 0.572
MMI2 10 0.190 0.266 0.357 0.481 0.653 0.999
MIX 10 0.176 0.201 0.227 0.258 0.294 0.349
MLE 10 0.195 0.254 0.310 0.375 0.449 0.568
ENT 10 0.179 0.200 0.220 0.242 0.267 0.301
MMD 20 0.130 0.145 0.160 0.178 0.197 0.223
MMI1 20 0.133 0.165 0.199 0.239 0.285 0.355
MMI2 20 0.133 0.176 0.222 0.277 0.340 0.439
MIX 20 0.127 0.146 0.167 0.192 0.221 0.264
MLE 20 0.134 0.185 G.246 0.326 0.430 0.614
ENT 20 0.126 0.139 0.152 0.166 0.180 0.199
MMD 30 0.107 0.121 0.136 0.153 0.172 0.198
MMI1 30 0.108 0.135 0.163 0.196 0.233 0.287
MMI2 30 0.109 0.143 0.177 0.218 0.262 0.327
MIX 30 0.105 0.122 0.140 0.162 0.187 0.224
MLE 30 0.107 0.144 0.191 0.254 0.335 0.477
ENT 30 0.104 0.116 0.129 0.142 0.156 0.175
MMD 50 0.084 0.095 0.108 0.123 0.139 0.163
MMI1 50 0.085 0.105 0.127 0.152 0.180 0.221
MMI2 50 0.085 0.109 0.134 0.163 0.195 0.240
MIX 50 0.082 0.096 0.110 0.128 0.148 0.177
MLE 50 0.082 0.103 0.128 0.159 0.19%4 0.247
ENT - 50 0.083 0.095 0.106 0.120 0.135 0.155
MMD 75 0.068 0.079 0.030 0.104 0.120 0.142
MMI1 75 0.068 0.086 0.105 0.127 0.151 0.186
MMI2 75 0.068 0.088 0.109 0.134 0.160 0.197
MIX 75 0.067 0.079 0.092 0.108 0.125 0.151
MLE 75 0.067 0.083 0.103 0.127 0.154 0.195
ENT 75 0.067 0.077 0.087 0.099 0.112 0.130
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TABLE 5.10
STANDARD ERROR OF SELECTED QUANTILES
( CASE - 2 : C.V. = 0.5 SKEW = 3.0 )
RETURN PERIOD
SAMPLE ~=w=--=--eecc-cc-cccccccmrrecssceemceesssomeseoooccoconoo-
METHOD SIZE 10 25 50 100 200 500
MMD 10 0.272 0.320 0.342 0.356 0.361 0.361
MMI1 10 0.238 0.351 0.474 0.642 0.878 1.354
MMI2 10 0.229 0.392 0.625 1.040 1.825 4.220
MIX 10 0.232 0.287 0.331 0.376 0.422 0.486
MLE 10 0.220 0.267 0.304 0.343 0.386 0.451
ENT 10 0.237 0.354 0.477 0.641 0.861 1.278
MMD 20 0.182 0.228 0.257 0.282 0.303 0.325
MMI1 20 0.153 0.223 0.293 0.381 0.493 0.692
MMI2 20 0.152 0.240 0.343 0.489 0.699 1.141
MIX 20 0.155 0.200 0.237 0.277 0.320 0.380
MLE 20 | 0.157 0.236 0.313 0.407 0.519 0.703
ENT 20 0.153 0.220 0.284 0.362 0.456 0.612
MMD 30 0.155 0.199 0.229 0.256 0.281 0.310
MMI1 30 0.129 0.187 0.244 0.314 0.398 0.540
MMI2 30 0.129 0.198 0.273 0.371 0.500 0.738
MIX 30 0.132 0.174 0.209 0.248 0.289 0.349
MLE 30 0.133 0.200 0.264 0.340 0.427 0.564
ENT 30 0.130 0.183 0.233 0.291 0.358 0.464
MMD 50 0.122 0.165 0.196 0.225 0.253 0.286
MMI1 50 0.100 0.146 0.191 0.248 0.321 0.457
MMI2 50 0.100 0.151 0.205 0.277 0.373 0.568
MIX 50 0.103 0.141 0.173 0.210 0.250 0.307
MLE 50 0.103 0.153 0.200 0.254 0.314 0.406
ENT 50 0.100 0.139 0.173 0.211 0.253 0.315
MMD 75 0.101 0.140 0.169 0.197 0.225 0.260
MMI1 75 0.083 0.123 0.161 0.206 0.258 0.343
MMI2 75 0.083 0.127 0.169 0.221 0.283 0.389
MIX 75 0.086 0.120 0.151 0.185 0.222 0.276
MLE 75 0.084 0.125 0.161 0.201 0.246 0.311
ENT 75 0.083 0.118 0.149 0.184 0.221 0.276
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TABLE 5.11
STANDARD ERROR OF SELECTED QUANTILES
( CASE - 3 : C.V.= 0.5 SKEW = 5.0 )
RETURN PERIOD

SAMPLE =----------e--c--ccoccccc e cmc e mmmee e

METHOD SIZE 10 25 50 100 200 500
MMD 10 0.323 0.377 0.396 0.402 0.397 0.381
MMI1 10 0.265 0.406 0.555 0.755 1.033 1.588
MMI2 10 0.245 0.443 0.724 1.222 2.160 5.045
MIX 10 0.266 0.332 0.379 0.423 0.465 0.518
MLE 10 0.242 0.280 0.303 0.323 0.342 0.366
ENT 10 0.262 0.406 0.567 0.802 1.154 1.922
MMD - 20 0.221 0.276 0.307 0.330 0.346 0.359
MMI1 20 0.173 0.257 0.344 0.454 0.597 0.856
MMI2 20 0.167 0.271 0.398 0.585 0.863 1.471
MIX 20 0.181 0.234 0.275 0.317 0.359 0.417
MLE 20 0.170 0.228 0.283 0.348 0.424 0.543
ENT 20 0.173 0.237 0.296 0.364 0.444 0.571
MMD 30 0.182 0.237 0.271 0.299 0.322 0.344
MMI1 30 0.137 0.206 0.277 0.367 0.480 0.680
MMI2 30 0.134 0.215 0.307 0.436 0.616 0.974
MIX 30 0.146 0.195 0.234 0.276 0.319 0.378
MLE 30 . 0.139 0.196 0.249 0.310 0.379 0.482
ENT . 30 0.137 0.188 0.233 0.285 0.342 0.427
MMD 50 0.148 0.202 0.238 0.269 0.295 0.323
MMI1 50 0.107 0.165 0.225 0.300 0.397 0.575
MMI2 50 0.105 0.169 0.240 0.336 0.466 0.726
MIX 50 0.116 0.161 0.199 0.239 0.282 0.341
MLE 50 0.110 0.161 0.206 0.257 0.312 0.394
ENT - 50 0.106 0.146 0.181 0.220 0.263 0.324
MMD 75 0.122 0.170 0.204 0.235 0.263 0.296
MMI1 75 0.088 0.135 0.182 0.239 0.309 0.428
MMI2 75 0.087 0.138 0.191 0.258 0.343 0.494
MIX 75 0.094 0.134 0.168 0.205 0.245 1 0.302
MLE 75 0.090 0.131 0.167 0.207 0.250 0.313
ENT 75 0.088 0.124 0.156 0.191 0.229 0.284
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TABLE 5.12
STANDARD ERROR OF SELECTED QUANTILES
( CASE - 4 : C.V. = 0.3 SKEW = 3.0 )
RETURN PERICD
SAMPLE =------=c-ccmsercmcccccncennccncccccncomosmoancocoocoean-
METHOD SIZE 10 25 50 100 200 500
MMD 10 0.189 0.229 0.254 0.274 0.290 0.306
MMI1 10 0.175 0.256 0.332 0.424 0.537 0.728
MMIZ2 10 0.164 0.272 0.407 0.608 0.916 1.614
MIX 10 0.171 0.220 0.257 0.295 0.334 0.388
MLE 10 0.164 0.194 0.214 0.233 0.252 0.277
ENT 10 0.173 0.239 0.297 0.365 0.445 0.575
MMD 20 0.133 0.170 0.196 0.220 0.242 0.268
MMI1 20 0.118 0.174 0.227 0.289 0.363 0.482
MMI2 20 0.114 0.181 0.255 0.353 0.481 0.719
MIX 20 0.119 0.159 0.192 0.227 0.263 0.314
MLE 20 0.115 0.149 0.177 0.208 0.241 0.287
ENT 20 0.117 0.158 0.192 0.231 0.272 0.334
MMD 30 0.111 0.148 0.175 0.202 0.227 0.260
MMI1 30 0.096 0.143 0.190 0.246 0.314 0.427
MMI2 30 0.093 0.147 0.206 0.283 0.383 0.567
MIX 30 0.098 0.135 0.168 0.203 0.240 0.294
MLE 30 0.096 0.132 0.164 0.198 0.234 0.285
ENT 30 0.095 0.127 0.154 0.184 0.216 0.261
MMD 50 0.085 0.118 0.144 0.171 0.196 0.230
MMI1 50 0.072 0.111 0.150 0.196 0.250 0.338
MMI2 50 0.071 0.113 0.158 0.214 0.284 0.402
MIX 50 0.074 0.107 0.136 0.169 0.204 0.255
MLE 50 0.072 . 0.101 0.128 0.157 0.188 0.230
ENT - 50 0.072 0.096 0.119 0.143 0.169 0.206
MMD 75 0.071 0.100 0.124 0.148 0.173 0.206
MMI1 75 0.060 0.092 0.124 0.161 0.204 0.271
MMI2 75 0.060 0.094 0.129 0.172 0.222 0.304
MIX 75 0.062 0.091 0.117 0.146 0.179 0.225
MLE 75 0.060 0.085 0.108 0.133 0.159 0.195
ENT 75 0.060 0.083 0.104 0.127 0.152 0.186




TABLE 5.13

STANDARD ERROR OF SELECTED QUANTILES

( CASE - 5 : C.Vv. = 0.7 SKEW = 3.0 )
RETURN PERIOD

SAMPLE =~=---csemmcccmc o e e e e rm e s e m e m s e

METHOD SIZE 10 25 50 100 200 500
MMD 10 0.349 0.392 0.404 0.404 0.395 0.375
MMI1 10 0.305 0.435 0.586 0.805 1.127 1.818
MMI2 10 0.301 0.499 0.801 1.371 2.522 6.326
MIX 10 0.291 0.345 0.387 0.431 0.476 0.538
MLE 10 0.282 0.342 0.393 0.450 0.516 0.619
ENT 10 0.315 0.487 0.693 1.006 1.490 2.587
MMD 20 0.237 0.284 0.312 0.334 0.350 0.364
MMI1 20 0.205 0.279 0.352 0.440 0.548 0.730
MMI2 20 0.207 0.304 0.411 0.555 0.748 1.119
MIX 20 0.202 0.248 0.286 0.326 0.369 0.430
MLE 20 0.208 0.315 0.434 0.595 0.818 1.264
ENT 20 0.210 0.293 0.375 0.475 0.600 0.812
MMD 30 0.187 0.232 0.263 0.290 0.313 0.338
MMI1 30 0.159 0.216 0.274 0.342 0.424 0.556
MMI2 30 0.160 0.230 0.306 0.401 0.522 0.734
MIX 30 0.159 0.199 0.235 0.274 0.317 0.378
MLE 30 0.164 0.252 0.347 0.470 0.630 06.919
ENT 30 0.162 0.221 0.278 0.347 0.429 0.561
MMD 50 0.154 0.204 0.240 0.272 0.300 0.332
MMI1 50 0.127 0.175 0.224 0.288 0.373 0.539
MMI2 50 0.128 0.182 0.241 0.321 0.434 0.675
MIX 50 0.130 0.168 0.204 0.243 0.286 0.350
MLE 50 0.128 0.184 0.242 0.312 0.395 0.528
ENT’ 50 0.127 0.170 0.212 0.262 0.323 0.421
MMD 75 0.124 0.167 0.201 0.234 0.265 0.303
MMI1 75 0.103 0.141 0.179 0.226 0.282 0.377
MMI2 75 0.103 0.145 0.188 0.242 0.309 0.427
MIX 75 0.105 0.139 0.171 0.208 0.248 0.308
MLE 75 0.104 0.145 0.187 0.235 0.289 0.372
ENT 75 0.103 0.138 0.171 0.209 0.253 0.322
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TABLE 5.14
ROOT MEAN SQUARE ERROR OF SELECTED QUANTILES
( CASE - 1 : C.V. = 0.5 SKEW = 1.0 )
RETURN PERIOD
SAMPLE ---------=scecccccmcccocccrrorccocnocnccec oo
METHOD SIZE 10 25 50 100 200 500

MMD 10 0.185 0.214 6.239 0.265 0.230 0.320
MMI1 10 0.190 0.239 0.29%4 0.364 0.451 0.596
MMI2 10 0.195 0.269 0.357 0.482 0.658 1.019
MIX 10 0.180 0.204 0.228 0.258 0.294 0.351
MLE 10 0.195 0.256 0.317 0.391 0.477 0.615
ENT 10 0.185 0.222 0.254 0.287 0.321 0.365
MMD 20 0.131 0.152 0.172 0.194 0.217 0.248
MMI1 20 0.133 0.165 0.200 0.242 0.292 0.367
MMI2 20 0.134 0.178 0.223 0.277 0.340 0.441
MIX 20 0.129 0.147 0.167 0.192 0.221 0.265
MLE 20 0.135 0.184 0.246 0.328 0.433 0.623
ENT 20 0.129 0.152 0.172 0.194 0.215 0.242
MMD 30 0.107 0.125 0.143 0.163 0.184 0.212
MMI1 30 . 0.108 0.135 0.164 0.199 0.238 0.297
MMI2 30 0.109 0.143 0.178 0.218 0.262 0.329
MIX 30 0.105 0.122 0.140 0.162 0.187 0.225
MLE 30 0.107 0.144 0.191 0.254 0.336 0.481
ENT 30 0.106 0.124 0.141 0.159 0.177 0.201
MMD 50 0.084 0.097 0.111 0.127 0.145 0.170
MMI1 50 0.085 0.105 0.127 0.154 0.184 0.227
MMI2 50 0.085 0.109 0.134 0.163 0.195 0.240
MIX 50 0.083 0.096 0.110 0.128 0.148 0.177
MLE 50 0.083 0.103 0.128 0.159 0.194 0.247
ENT- 50 0.083 0.098 0.112 0.127 0.144 0.166
MMD 75 0.068 0.079 0.092 0.107 0.123 0.146
MMI1 75 0.068 0.086 0.105 0.128 0.153 0.190
MMI2 75 0.068 0.088 0.109 0.134 0.160 0.197
MIX 75 0.067 0.079 0.092 0.107 0.125 0.151
MLE 75 0.067 0.083 0.103 0.127 0.154 0.195
ENT 75 0.067 0.078 0.090 0.103 0.117 0.136
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TABLE 5.15
ROOT MEAN SQUARE ERROR OF SELECTED QUANTILES
( CASE - 2 : C.V. = 0.5 SKEW = 3.0 )
RETURN PERIOD

SAMPLE ----=---c-s-cccmccmcmr e m e s ceem e —sso——oom—o-

METHOD SIZE 10 25 50 100 200 500
MMD 10 0.272 0.329 0.368 0.404 0.438 0.479
MMI1 10 0.237 0.351 0.474 0.643 0.880 1.361
MMI2 10 0.229 0.392 0.632 1.061 1.868 4.306
MIX 10 0.233 0.292 0.339 0.387 0.436 0.502
MLE 10 0.222 0.277 0.322 0.370 0.420 0.492
ENT 10 0.238 0.359 0.491 0.666 0.901 1.342
MMD 20 0.182 0.233 0.273 0.313 0.351 0.399
MMI1 20 0.153 0.223 0.293 0.381 0.493 0.6%94
MMI2 20 0.152 0.240 0.345 0.494 0.711 1.166
MIX 20 0.156 0.205 0.245 0.288 0.333 0.396
MLE 20 0.157 0.236 0.313 0.407 0.519 6.706
ENT 20 0.153 0.221 0.289 0.371 0.472 0.639
MMD 30 0.155 0.202 0.240 0.278 0.316 0.365
MMI1 30 0.129 0.187 0.244 0.314 0.398 0.540
MMI2 30 0.129 0.198 0.274 0.374 0.507 0.752
MIX 30 0.132 0.177 0.215 0.256 0.300 0.361
MLE 30 0.133 0.200 0.265 0.342 0.432 0.575
ENT 30 ©0.130 0.184 0.236 0.296 0.367 0.478
MMD 50 0.123 0.166 0.201 0.238 0.274 0.321
MMI1 50 0.100 0.146 0.191 0.248 0.321 0.457
MMI2 50 0.100 0.151 0.206 0.279 0.377 0.574
MIX 50 0.103 0.142 0.177 0.215 0.256 0.314
MLE 50 0.103 0.154 0.202 0.258 0.321 0.419
ENT - 50 0.100 0.140 0.175 0.214 0.259 0.324
MMD 75 0.103 0.140 0.172 0.205 0.240 0.284
MMI1 75 0.083 0.123 0.161 0.206 0.258 0.344
MMI2 75 0.083 0.127 0.170 0.222 0.286 0.394
MIX 75 0.086 0.121 0.153 0.188 0.226 0.280
MLE 75 0.084 0.125 0.162 0.204 0.250 0.319
ENT 75 0.083 0.119 0.150 0.186 0.225 0.282
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TABLE 5.16
ROOT MEAN SQUARE ERROR OF SELECTED QUANTILES
(CASE - 3 : C.V.= 0.5 SKEW= 5.0)
RETURN PERICD

SAMPLE -=--=-----somccomc e s cemseeseo—omoneo

METHOD SIZE 10 25 50 100 200 500
MMD 10 0.323 0.384 0.422 0.455 0.486 0.526
MMI1 10 0.265 0.406 0.554 0.755 1.034 1.593
MMI2 10 0.246 C.443 0.731 1.245 2.210 5.153
MIX 10 0.267 0.338 0.390 0.441 0.490 0.553
MLE 10 0.244 0.300 0.346 0.392 0.438 0.498
ENT 10 0.262 0.406 0.569 0.807 1.162 1.938
MMD 20 0.222 0.280 0.323 0.364 0.403 0.452
MMI1 20 0.173 0.258 0.344 0.454 0.597 0.857
MMI2 20 0.168 0.271 0.400 0.592 0.879 1.506
MIX 20 0.181 0.239 0.286 0.334 0.383 0.448
MLE 20 0.170 0.232 0.290 0.357 0.434 0.553
ENT 20 0.173 0.237 0.296 0.364 0.444 0.571
MMD 30 0.183 0.238 0.280 0.322 0.363 0.413
MMI1 30 0.137 0.207 0.277 0.366 0.480 0.681
MMI2 30 0.134 0.215 0.309 0.441 0.626 0.997
MIX 30 0.146 0.198 0.242 0.289 0.337 0.402
MLE 30 0.138 0.196 0.250 0.310 0.378 0.482
ENT 30 0.136 0.188 0.233 0.285 0.342 0.427
MMD 50 0.151 0.202 0.243 0.283 0.321 0.370
MMI1 50 0.107 0.165 0.224 0.300 0.397 0.576
MMI2 50 0.105 0.169 0.241 0.338 0.471 0.737
MIX 50 0.116 0.163 0.204 0.248 0.294 0.357
MLE 50 0.110 0.161 0.207 0.259 0.316 0.400
ENT - 50 0.106 0.146 0.182 0.221 0.264 0.325
MMD 75 0.127 0.170 0.207 0.244 0.282 0.330
MMI1 75 0.088 0.135 0.182 0.239 0.310 0.429
MMI2 75 0.087 0.138 0.191 0.260 0.347 0.502
MIX 75 0.094 0.135 0.171 0.211 0.253 0.313
MLE 75 0.090 0.132 0.169 0.210 0.255 0.322
ENT 75 0.088 0.124 0.156 0.191 0.230 0.284
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TABLE 5.17
ROOT MEAN SQUARE ERROR OF SELECTED QUANTILES
( CASE - 4 : C.V. = 0.3 SKEW = 3.0 )
RETURN PERIOCD
SAMPLE =-----===--c-c-ccccmccmcccccscocccccccooos s e
METHOD SIZE 10 25 50 - 100 200 500
MMD 10 0.189 0.239 0.277 0.315 0.351 0.398
MMI1 10 0.175 0.257 0.333 0.425 0.537 0.728
MMI2 10 0.165 0.272 0.408 0.615 0.934 1.655
MIX 10 0.172 0.223 0.263 0.303 0.344 0.399
MLE 10 0.166 0.211 0.249 0.289 0.330 0.385
ENT 10 0.173 0.239 0.297 0.365 0.445 0.574
MMD 20 0.133 0.176 0.212 0.248 0.284 0.330
MMI1 20 0.118 0.175 0.228 0.291 0.364 0.483
MMI2 20 0.115 0.181 0.255 0.354 0.486 0.731
MIX 20 0.120 0.163 0.199 0.236 0.274 0.328
MLE 20 0.116 0.156 0.191 0.230 0.269 0.323
ENT 20 0.118 0.159 0.195 0.233 0.276 0.338
MMD 30 0.111 0.151 0.185 0.220 0.255 0.302
MMI1 30 0.096 0.144 0.190 0.247 0.314 ‘0.427
MMI2 30 0.094 0.147 0.206 0.284 0.386 0.575
MIX 30 0.098 0.138 0.172 0.209 0.248 0.303
MLE 30 0.096 0.134 0.168 0.205 0.244 0.297
-ENT 30 0.095 0.128 0.157 0.188 0.221 0.267
MMD 50 0.085 0.120 0.150 0.181 0.213 0.256
MMI1 50 0.072 C.111 0.150 0.196 0.250 0.337
MMI2 50 0.071 0.113 0.158 0.215 0.286 0.407
MIX 50 0.074 0.108 0.139 0.172 0.209 0.260
MLE 50 0.072 0.102 0.130 0.160 0.192 0.235
ENT . 50 0.072 0.098 0.122 0.148 0.176 0.215
MMD 75 0.071 0.100 0.127 0.155 0.185 0.225
MMI1 75 0.060 0.092 0.124 0.161 0.204 0.271
MMI2 75 0.060 0.094 0.129 0.172 0.224 0.307
MIX 75 0.062 0.091 0.118 0.148 0.181 0.228
MLE 75 0.060 0.085 0.108 0.133 0.160 0.196
ENT 75 0.060 0.084 0.107 0.132 0.159 0.195
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TABLE 5.18
ROOT MEAN SQUARE ERROR OF SELECTED QUANTILES
( CASE - 5 : C.V. = 0.7 SKEW = 3.0 )
RETURN PERIOD

SAMPLE ~~~s-=c-ccsccccccmccccccreomrmrrmccr s e e e

METHOD SIZE 10 25 50 100 200 500
MMD 10 0.349 0.402 0.434 0.463 0.491 0.526
MMI1 10 0.304 0.435 0.588 0.811 1.140 1.844
MMI2 10 0.302 0.500 0.810 1.399 2.581 6.447
MIX 10 0.293 0.351 0.398 0.446 0.494 0.559
MLE 10 0.283 0.346 0.398 0.455 0.520 0.622
ENT 10 0.317 0.513 0.752 1.106 1.636 2.800
MMD 20 0.237 0.290 0.331 0.371 0.409 0.455
MMI1 20 0.205 0.279 0.352 0.441 0.550 0.735
MMI2 20 0.207 0.304 0.413 0.559 0.759 1.145
MIX 20 0.204 0.254 0.296 0.341 0.387 0.451
MLE 20 0.209 0.315 0.434 0.597 0.825 1.282
ENT 20 0.211 0.305 0.402 0.524 0.674 0.926
MMD 30 0.187 0.235 0.275 0.315 0.355 0.404
MMI1 30 0.159 0.216 0.273 0.342 0.425 0.559
MMI2 30 0.160 0.230 0.307 0.404 0.528 0.748
MIX 30 0.159 0.204 0.243 0.285 0.330 0.394
MLE 30 0.164 0.252 0.349 0.475 0.639 0.940
ENT 30 0.163 0.230 0.299 0.382 0.482 0.642
MMD 50 0.156 0.204 0.245 0.285 0.323 0.370
MMI1 50 0.127 0.175 0.224 0.289 0.374 0.541
MMI2 50 0.128 0.182 0.242 0.323 0.437 0.681
MIX 50 0.130 0.170 0.208 0.249 0.293 0.358
MLE 50 0.128 0.184 0.243 0.314 0.399 0.537
ENT 50 0.127 0.177 0.227 0.287 0.358 0.473
MMD 75 0.126 0.167 0.204 0.241 0.279 0.327
MMI1 75 0.103 0.141 0.180 0.226 0.283 0.379
MMI2 75 0.103 0.145 0.189 0.243 0.311 0.431
MIX 75 0.105 0.140 0.173 0.211 0.252 0.312
MLE 75 0.103 0.145 0.187 0.235 0.291 0.376
ENT = 75 0.104 0.143 0.181 0.226 0.278 0.358
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Our objective here is to identify a robust estimator, based on
Tables 5.4-5.18. Kuczera (1982a, 1982b) defined a robust estimator as
one that is resistant and efficient over a wide range of population
fluctuations. If an estimator performs steadily without undue
deterioration in RMSE and BIAS, it can be expected to perform better
than other competitive estimators under population conditions different
from those which the conclusions are based. Two criteria for
identifying a resistant estimator (Matalas and Fiering, 1977; Kuczera,
1982b) are mini-max and minimum average RMSE. According to the mini-max
criteria, the preferred estimator is the one whose maximum RMSE for the
five population cases is minimal. The minimum average criterion is to
select the estimator whose RMSE average over the five cases is minimal.
Table 5.19 reports the maximum and average RMSE for each estimator for
selected sample size and return period.

The MIX estimator is superior on the basis of the minimum-average
RMSE criteria, and comparable to MMD on the basis of mini-max RMSE
criteria. Hence, MIX is expected to be the most resistant estimator.
Nevertheless, MMD performs comparably. The method proposed by the U.S.
Water Resources Council (MMI1l) performs poorly, as do MLE and ENT.
Taking into consideration the poor performance of MLE and ENT and the
tremendous amount of CPU time required by the extensive search routines,
there should be no doubt that MLE and ENT are inferior methods for LP3
distribution.

To see the performance of estimators in terms of BIAS, Table 5.20,
similar to Table 5.19, was prepared. Interestingly enough, the superior
RMSE performance of MIX in comparison to MMD is not deteriorated by

BIAS. MIX yields considerably less BIAS then MMD and is clearly
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superior to MMD in terms of both mini-max BIAS and minimum average BIAS
criteria.
5.7 Conclusions

MIX and MDD were found to be clearly superior to other methods in
terms of RMSE and BIAS, The method advocated by U.S. Water Resources
Council (MMIl) faired poorly. It seems that its continued recommenda-
tion for U.S. Agencies is unwarranted. MLE typically required two order
of magnitude high CPU time than other methods and faired poorly in
performance. Based on the investigations of this study, MIX holds an
edge over MMD in performance. However, the results are close for the
two methods.

The results of this study indicate that, when considering the
fitting of the LP3 model, MIX or MMD should be used as the methods of
extimation, as they are clearly superior to the method advocated by the
U.S. Water Resources Council, A simple procedure‘proposed in this work
could be used to estimate parameters of LP3 by MIX. This procedure
provides a straight-forward solution, and thus obviates the need for

iterative procedure.
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Table 5.19 : Summary of RMSE performance of 200 - Year Quantile

Estimators.

Estimator n=10 n = 30 n =10 n = 30

MMD 0.491 0.363 0.411 0.295
MMI1 1.140 0.480 0.808 0.371
MMI2 2.581 0.626 1.650 0.462
MIX 0.494 0.337 0.412 0.280
MLE 0.520 0.639 0.437 0.406
ENT 1.636 0.482 0.893 0.318

Table 5.20 :

Summary of BIAS performance of 200 - Year Quantile

Estimators.

- - - - - - - - - - - e -

Estimator n =10 n = 30 n =10 n = 30
MMD -0.291 -0.167 -0.235 -0.133
MMI1 0.172 0.032 0.086 0.023
MMI2 0.554 0.116 0.341 0.069
MIX -0.156 -0.109 -0.099 -0.070
MLE -0.274 0.113 -0.178 0.057
ENT 0.678 0.221 0.256 0.088

* the sign shows the dominant

tendency

of the estimator




Chapter 6

TWO COMPONENT EXTREME VALUE (TCEV) DISTRIBUTION

6.1 Introduction

The random variable x is defined to have a two-component extreme

value (TCEV) distribution if its probability demsity function (pdf) is

given by
Al A2 )
f(x) = [ exp(-x/9,) + — exp(-x/6,)] exp[-A, exp(-x/8,)
el 1 62 2 1 1
- A, exp(- x/8,)]5 x >0 (6.1)
= exp(- N - Az); x=0 (6.2)
where A1 > 0, A2 > o, 92 > e1 > 0 are parameters. Its cumulative

density function (cdf) is

F(x) = exp[- A} exp(- x/el) - Ay exp(-x/8,)1; x >0 (6.3)
This cdf has been shown (Versace, et al., 1982; Rossi, et al., 1984) to
represent the distribution function of the annual maximum x of a non-
negative random variate z whose number of occurrences, k, in a year is a
random variate when the following hypotheses hold: (1) z is an indepen-
dent, identically distributed (iid) variable with probability density
function defined by a mixture of two exponential distributions; (2) k is
an iid Poisson distributed variate; and (3) z and k are not dependent
upon each other.

The two components of the distribution of both z and x are usually
referred to as basic component (subscripts of parameters = 1) and out-
‘lying component (subscripts of parameters = 2). Theoretical properties
of the TCEV distribution have been widely investigated (Rossi,"et al.,
1984; Beran, et al., 1986; Rossi, et al., 1986). 'Briefly summarized,

the TCEV distribution permits a reasonable interpretation of the

91
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physical phenomenon which generates floods and is able to account for
most of the characteristics of the real world flood data, important
among them being the large variability of the sample skewness coeffi-
cient which mostly gives rise to the poor performance of other commonly
used flood frequency distributions. The TCEV distribution also offers a
practical approach to regional flood frequency estimation.

Thus far, only two parameter estimation methods have been proposed
for fitting the TCEV distribution to annual flood series. Canfield
(1979) suggested a least squares technique, while Rossi, et al. (1984)
presented a procedure based on the maximum likelihood estimation (MLE)
method. The latter was further investigated and a regional estimation
algorithm based on it was developed (Fiorentino, et al. 1985). Small
sample properties of the site-specific and regionalized TCEV-MLE proce-
dure were assessed by Fiorentino and Gabriele (1985), and Arnell and
Gabriele (1986). In particular, the latter compared the regionalized
TCEV-MLE algorithm with other regional estimators. Although various
features of the TCEV-MLE method exhibited a competitive performance, an
improvement of the site-specific estimators was suggested by Fiorentino
and Gabriele (1985). Furthermore, Fiprentino, et al. (1986) noted that
regional estimates of some parameters could be still improved. In light
of this discussion, it is desirable to investigate further into the
properties and estimation procedures of the TCEV distribution.

The objective of this chapter is to derive this distribution using
the principle of maximum entropy (POME). The derivation sheds more
light on the nature of the distribution and provides an alternafive
method for estimation of its parameters. The TCEV-POME estimation

procedure is shown to be also suitable for regionalized use. 1Its
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performance is assessed by using the Monte Carlo technique and the
results are compared with those of the MLE method.

6.2 The Principle of Maximum Entropy (POME)

Entropy is defined as a measure of uncertainty. The entropy
function H(f) of a distribution, with pdf f(x), of a random variable X
quantifies this uncertainty. When X is a continuous variable and
assumes values in a domain ¢, H(f) is given as

H(f) = - fc f(x) 1n f(x) dx (6.4)
This form was first used by Jaynes (1968) and represents an extension
for the continuous case of the entropy function applied in communication
theory by Shannon and Weaver (1949).

The principle of maximum entropy (POME) was formulated by Jaynes
(1957, 1961) and states that "the minimally pfejudiced assignment of
probabilities is that which maximizes the entropy subject to the given
information." Mathematically, "the given information" is quantified by
some linearly independent constraints to be imposed while maximizing
equation (6.4). It has been argued by Jaynes that the probability dis-
tribution resulting from POME is unique in the sense that it does not
assume any more information than that quantified by the linearly
independent constraints, subject to which the entropy is maximized. In
other words, this distribution is most uncertain (or minimally pre-
judiced) with respect to the.missing information. POME has been applied
in several hydrologic fields., Sonuga (1972, 1976) was probably the
first who applied POME in hydrologic frequency analysis. Jowitt (1979),
and Singh and Singh (1985) successfully exploited it to derive the
extreme value type I and the Pearson type III distributions respec-

tively. Furthermore, the function H(f) has been given for a number of
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probability distributions by Verdugo Lazo and Rathie (1978), and Singh,
et al. (1985).

In all of these cases, POME has been shown to uniquely specify the
amount of information in terms of constraints required to derive a given
distribution. The parameter estimation methods based on POME almost
always result in an easy, practical solution, and their performance is
generally found to be comparable with that of MLE method.

Maximizing H(f) is conceptually easy when constraints are formu-
lated as population means of specified functions of x. 1In fact, in such
a case thé required pdf f(x) has been shown (Singh, et al., 1986) to
result in

T
£(x) = exp[- aj - .21 a; v;(0)] (6.5)
J
where yj(x) are some functions whose population means are the selected
constraints, and aj ( =0, 1, «.., T) are Lagrange multipliers. Since,
by definition,
J i) ax =1 , (6.6)

for equation (5), the following relationships hold:
aao
g;; =- E[Yj(x)]

i=11 2, ..., T

5 = var[yj(x)] i=1,2, ... T (6.7)

i 143
Tata COV[Yi(x), Yj(X)]
i7]
where E[*], var[°] and cov[*] indicate population mean, variance and

covariance respectively.
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Equations (6.5), (6.6) and (6.7) enable us to derive Lagrange
multipliers as functions of apriori information provided by comstraints.
Finally, for equations (6.4) and (6.5), the entropy function can be
written as
T

+ I a, Ely,(x)] (6.8)
0 41 3771

H(E) = a

6.3 Derivation of the TCEV Distribution

6.3.1 Specification of Constraints

The TCEV distribution has four parameters, hence five constraints
need to be given for its derivation. Let the constraints have the

following form:

;7 f(x) dx =1 (6.9)
/7 x £(x) dx = E[x] (6.10)
I, exp(- x/8)) £(x) dx = Elexp(- x/8,)] (6.11)
ffw exp (- x/ez) f(x) dx = Elexp(- x/ez)] (6.12)
- (hy/8,) exp(- x/6,)
J_In(1 + (Al/el) exp (= x/el)) f(x) dx
(A)/8.)) exp(~ x/6,)
= E[In(1 + ool 2 (6.13)

(Allel) exp (- x/Gl))]

The constraints are to be evaluated from data, directly or
indirectly, and will suffice to derive the TCEV distribution through
maximization of entropy. It may be noted that the first three con-
straints are the same'as those used for deriving EV1 distribution
(Jowitt, 1979; Singh, et al., 1985), while the fourth constraiﬁt, which

is analogous to the third one, provides information on the outlying
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component. The final constraint combines the information between the

basic and outlying components.

6.3.2 Derivation of the Distribution

The pdf in equation (6.5) is determined by POME according to

equations (6.9) - (6.13), and takes the form:

f(x) = expl- ao - al X - a2 exp(-x/el) - 33 exp(-x/ez)

A, 8
- +
a4 Infl e2 Al exp[- X(é _ é 1}
21 2 1

Inserting equation (6.14) in equation (6.9),

exp(ao) =/ _ exp[- a; x - a 2exp(— x/el)
A_© -a
2
- a, exp(-x/8,)] [1 + gz—xi exp (- xc%; - %I))} “

- _ _ 1/8
Let z = A1 exp(—x/el), 6 = 92/91, A= Az/(A1 ). After simple

manipulation, the zeroth Lagrange multiplier is:

o alﬁl—l
ag = 1n 91 -a 91 1n Al + lp IO z

eXp(— 8.2 Z/Al) exp[_ 33 Z(l/e) A](."l/e)]

-a
TR CIDE S

Inserting equation (6.16) in equation (6.14) we get,

1 214
f(x) = =N expl- a; x - a, exp (- x/Sl)
1

(A,/8,) exp(- x/8,) A

(78 exp(- 576 /7

- a, exp(—x/ez)] 1+ 0

where I0 is the integral in equation (6.16). When
a, = 1/91, a, = Al, ay = Az, and a, = -1

integral IO becomes unity and equation (6.17) becomes

1

dx

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)
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A A
f(x) = [;;—flL exP(—X/el) + Fi exp(- x/92)] exp([- Al exp (- X/el)

- A, exp(-x/ez)] (6.19)
which, according to the assumption that equation (6.1) also holds for
negative values of x, is the pdf of the TCEV distribution. This distri-
bution is consistent with respect to the information given by equations
(6.9) - (6.13).

6.3.3 Relation between Constraints and Parameters

The relationships between the parameters of TCEV distribution and
the constraints are specified by exploiting equation (6.7) as follows.
Partially differentiating ag wW.Tr.t. ays 855 a4 and a, respectively, and

taking into account equation (6.18),

da
w )
332 = - E[x] = - el 1n A1 + el IO ln v exp(- vy - Ay(l/ ))
1+ 35/ 4y (6.20)
da
o G
1+ %y((l/e)'l)) dy (6.21)
CEW 1 ® (1/6) (1/9)
Ty Elexp(- x/6,)] = - L Jo ¥ exp(-y - ly )
1
1+ 5 y(@/0"Dy gy (6.22)
da (A, /8,) exp(- x/8,)
0 2/ 72 2
-53_4 = - E[ln(l + (Al/el) exp(_ x/el)]

= - f; In(l + %’y((lle)_l)) exp(- y - A ylle)

1+ 5y @Oy 4y (6.23)

Solving integrals in equations (6.20) to (6.22) provides,
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@ Jpd
Blxl =0, 1n A +0, v -0 & LI/ (6.24)
j=1 )
1 1 2 (=pid
Elexp(- x/8)] =+ [1 +% I == T'(j/8)1 (6.25)
1 K 5 .y G-D!
® Jad
1 (=1)-A .
Elexp(- x/8,)) = = — ¥ 3 I'(3/9) (6.26)
2 81, 4oy G-DY

where ¥ = 0.5772 is the Euler constant and I'(*) is the gamma function.
8 and A are dimensionless parameters, already defined in terms of the
four parameters of the TCEV distribution. The integral in equation
(6.23) cannot be solved explicitly. But, for 6 > 1.5, it is closely

approximated by the following function:

2.059 .1n 3 - 2(5.5°9) (27)

= 0.1 exp(-1)(3 + 8) A
The goodness of this approximation is shown in Figure 6.1. The curves
approximating the integral in equation (6.23) have not been plotted for
8 < 1.5 to avoid any confusion at the left-bottom where they tend to
overlap with each other. Moreover, the goodness of the approximation

deteriorates in this range. Thus final constraint can be related to the

parameters by
(A,/8,) exp(- x/6,)

) 2.059
(A1/ 91) exp (- x/ 61)

] = 0.1 exp(-1)(3 + 6)

. E{In(1 +

Jn 3 - 2(5.5)"% (6.28)

Equations (6.24) - (6.26) and (6.28) show that constraints are
related to the moments or moment-ratios of the distribution. In £fact,

besides the obvious case of the constraint E[yl(x)] representing the

population mean of x, it is clear that E[y4(x)] depends on the dimen-

sionless parameters © and A only, while both E[y3(x)] and E[yz(x)]
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depend on 6, A and Al (note that A2 is a function of Al via 6 and A). A
similar dependence is exhibited by the theoretical coefficients of skew-
ness (and kurtosis) and variation respectively as can be easily shown
using expressions of the moments given by Beran, et al, (1986). This
implies that the estimation
of the constraints will likely have a variability increasing with the
rank.

Figure 6.2 compares E[y4(x)] with the moments of the transformed

variate

y = 395- - 1n A (6.29)

1
which is also TCEV distributed and depends on © and A only. Skewness

and kurtosis of both y and x variates are the same, while the mean of y
is given by dividing the last two terms on the right-hand side of (6.24)

by © One can note that E[y4(x)] exhibits a shape similar to that of

1°
E[y] and that it is more semnsitive to changes in either € or A, parti-
cularly in the range of low values. This larger sensitivity is much
more evident while comparing E[y4(x)] with skewness and kurtosis; this
stipulates that entropy should provide dimensionless parameter estimates
much less variable than those based on the method of moments. This POME
procedure will be discussed in the next sectiom.

Furthermore, equation (6.26) shows that E[y3] is also related to

the probability, P2, that the annual maximum value of x comes from the

outlying component, P

2 having been derived by Beran, et al. (1986) as
__1 5 il
PZ 5 z G-D1 r(j/e) . (6.30)

i=1
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In fact, combining equations (6.26) and (6.30) gives E[exp(-x/ez)] =

PZ/A Analogously, it can be shown that E[exp(—x/el)] = P /Al, where

2° 1

P1 represents the chance that the annual maximum value of x comes from

the basic component.

A graph showing P, versus © and A values has been provided by

2
Beran, et al. (1986). It shows that for a given value of P2, 6 is a

quasi-linear function of 6 In A in almost the entire definition range of

A. This suggests that an approximate relationship solely between P2 and
A can be confidently used for first order calculations. Figure 6.3
shows the goodness of this approximation, which has the following

equation:

P, = 0.65 70-85 (6.31)

Thus, one can write

0.85
Elexp(-x/6,)] = 9:§§-§}--— (6.32)

2

6.3.4 Derivation of Constraints

Substituting equation (6.1) in equation (6.4) to express the

entropy function H(f) as

H(f)

- ffm In f(x) £f(x) dx = (1n 91 - 1n Al) ffm f(x) dx

6

+ L fm°° x f(x) dx + A 5~z
1 1=

exp (- x/el) f(x) dx

+ A ffm exp (- x/ez) f(x) dx

2
- (A2/62) exp (- x/BZ)
I In{l + (Al/el) Y x/el)] f(x) dx

(6.33)

On comparing with equation (6.8), the constraints of equations

(6.9) - (6.13) can be obtained.
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6.4 Estimation of Parameters

6.4.1 Point Estimation

Equations for estimation of parameters can be obtained by substi-
tuting sample values for the population means on the left-hand side of
equations (6.24) to (6.26) and (6.28)., The system of equations to be
solved for giving estimates of the four parameters of the TCEV

distribution thus takes the form:

* Jad
R=0 InA +0 y-0 jgl iz%%—ﬁ— T(5/6) (6.34)
=y . L 1 5 (=3
1o =i
S5, - - ot jil G 1/ (6.36)

(Az/ez) exP(" x/ez)

1 2.059
(Al/el) exp (- X/el)

In[l +

= 0.1 exp(-1)(3 + 9)

-0
pln 3 - 2(5.5 ) (6.37)

where the bar indicates that the sample mean of the underlying function

is considered. For simplicity, the left-hand sides of equations

(6.34) - (6.37) will be hereafter referred to as ?1, ey §4
respectively. Eliminating A2 by way of 6, A and Al’ and rearranging,
1 1 o (-1
A ==—1[1+3F I +—— T(3/9] (6.38)
1 3 8 .. G-
2 3=1
3 1y eIl e
6, = ¥,/{1n[1 + 3 jzl G-D7 TG/91/,
® o1ydad
+y- 3 DA r(3/6)} (6.39)

=1 3
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172
A= o (6.40)
Y .
1 3
1 -A, ¥ -6
2.059 1 "2,1n3-2(5.5 ) s
- 6 =
0.1 exp( 1Y(3 + ©) (W—) Y4 (6.41)
1 3
Putting §3 and §4 respectively in the form:
?3 = expl- x/(ele)] ' (6.42)
1-A 7
7, = 1n{1 + g7 L2 epl-E G- (6.43)
1 Y3 1

One obtains that the only unknown in equation (6.41) is ©. On the
other hand: (1) in equation (6.40), A does not appear on the right-hand

side; (2) in equation (6.39), 8. is the only unknown once © and A have

1
been evaluated; and (3) Al does not appear on the right-hand side in
equation (6.38). Therefore, a successive substitution iterative scheme
is developed for estimating the four parameters as follows. Assign
tentafive values to 8 and A, then successively estimate 91 by equation

(6.39), A, by equation (6.38), 6 by equation (6.41), and A by equation

1
(6.40). Substitute the last values of © and A for those previously

obtained and start again from estimation of 6 Stop when © and A no

1°
longer change. Note that the procedure is fast because equation (6.38)
and (6.40) admit solution in closed form and equations (6.39) and

(6.41), though not explicit, can be easily solved numerically, for each

exhibits one unknown only.

6.4.2 Regional Estimation

A regional flood frequency estimation algorithm can be déveloped
using equations (6.38) - (6.41) (obviously together with equations

(6.42) and (6.43)), which can also be used to validate the regionali-
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zation model proposed by Fiorentino, et al. (1985) and also described in
Fiorentino, et al. (1986). In short, this model assumes that dimension-
less parameters 6 and A do not change over extensive regions, while
parameter Al is constant in smaller areas. In this paper, a regionali-~
zation algorithm, based on POME, to estimate 6 and A is presented.

Suépose there are k gauged sites in a selected region which is
assumed to be homogeneous with respect to © and A. Let each site have
an annual flood series (AFS) with n years of record. At each site, one
must estimate the basic component parameters 61 and Al, which vary
from site‘to site, plus the two regional values of 6 and A. Hence,
there are in practice 2k + 2 unknowns. An equal number of independent
equations is then needed.

The first 2k equations of the algorithm proposed herein arise from
writing equations (6.38) and (6.39) k times, once for each available

AFS. The other two equations are derived by taking the average of

left-hand sides of equations (6.36) and (6.37) over all k sites,

k n X ol Jad
1 ir 1 (-1)-A .
=— I I A, exp(-="")=-= I = T(j/®) (6.44)
kn D) o40p 2F 5, § ;o G-D1
k n (A /8,)_ exp(- x,_/6,.)
B I I il + iyt s
r=1 i=1 A 78y) exp(=xy /8y

-9
= 0.1 exp(-1)(3 + 9)2'059 A1“3’2(5'5) (6.45)

Equations (6.44) and (6.45) can be written in a different manner

taking into account the transformation:

X
y=>"-1n A (6.46)

which makes their left-hand sides dependent on 6 and A only. Since the

values of ¢ and A are assumed to be constant at every site, the
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following forms are thus obtained

kn ' © 3.3

1 1 2 ndad

e 121 A exp(- y,/8) = - % -21 DY r(j/e) (6.47)
kn

1 A 1

n iil In{l + 3 exp[- (5 - 1) Yi]}

-6

(6.48)
The two procedures are mutually equivalent, at least when the available
AFS's have the same length at every site. Whichever is used, estimates
of Bl and Al at any site need to be obtained together with regional
estimates of 6 and A. 1In fact, both sets of equations depend on the
basic component parameters, the former in an explicit manner and the
latter through the transformation of equation (6.46).

The iterative scheme proposed by Fiorentino and Gabriele (1985) for
the regionalized TCEV-MLE procedure also successfully works using the
POME~based estimation method. Details of this scheme can be readily
found in Fiorentino, et al. (1986).

For a comparison between the proposed procedure and the MLE method,
two features of the former look favorable: (1) Estimation of the basic
component parameters, once 6 and A have been evaluated, is relatively
simple, for only equation (6.39) needs to be solved numerically.

(2) The equations contain a smaller number of exponentials to be solved.
However, only a large number of Monte Carlo experiments covering a wide
range of situations, can confirm whether the TCEV-POME estimation proce-
dure is competitive. .In order to make an assessment, herein shown are

the results derived by a limited number of computer simulation experi-

ments.

ceged
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6.5 Experimental Design and Results

The proposed estimation procedure was assessed, if only approxi-
mately, using the Monte Carlo technique, and generating synthetic series
= 10, A

from a TCEV distribution with parameters © = 10, 6 = 3.067,

1 1
and A = 0.173, which is what was used to evaluate the TCEV-MLE procedure
(Fiorentino and Gabriele, 1985; Arnell and Gabriele, 1986).

Two measures of performance were used, viz, the standardized bias:

BIAS = E(x - x)/x
and the standardized root mean square error:

RMSE = E(x - x)°/x
where ; and x denote the estimated and population values respectively of
the statistic under examination.

Since the regionalization is the natural field for application of a
distribution with a large number of parameters such as four, the
attention was principally devoted to the assessment of the regionalized
estimators.

One hundred repetitions of forty synthetic series, each with forty
years of record, were generated, i.e., 100 homogeneous regions, each
with 40 gauged sites, were simulated. Then the regionalization
algorithm described above was applied. For each repetition, a regional
estimate of 6 and A together with forty on-site elements of 61 and Al
were obtained. BIAS and RMSE of parameter and quantile regional
estimators were then evaluated. Of course, due to the very short number
of experiments, these results are not expected to reproduce the true
values of BIAS and RMSE, but they do provide a first order approximation

of the likely results.
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In Table 6.1, statistical properties of the regionalized TCEV-POME
estimators are compared with those obtained (when available) by
Fiorentino and Gabriele (1985), who applied the MLE procedure to the
same case. The comparison was also extended to the standardized quan-
tiles xF/§, which are important when an index flood regionalization
scheme is considered. As usual x denotes the sample mean, and Xp the
quantile.

Table 6.1. BIAS and RMSE of quantile and regional parametric
estimates.

POME MLE
BIAS RMSE BIAS RMSE
Regional Parameters
6 -0.10 0.13 -0.01 0.15
A 0.04 0.19 0.32 0.72
Quantiles Xp
Standardized Quantiles xF/§
F = 0.5 0.01 0.09
0.01 0.02
0.9 0.00 0.12 0.00 0.10
0.00 0.05 0.00 0.04
0.99 -0.05 0.16 -0.02 0.14
-0.06 0.10 -0.02 0.09
0.999 -0.07 0.17 -0.03 0.17
-0.07 0.12 -0.03 0.13

As regards quantiles (standardized or not), it can be seen that
both methods exhibited practically the same RMSE, while the MLE proce-

dure produced less BIAS than the POME method. On the other hand, the
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POME procedure produced favorable RMSE with respect to the regional
parameter estimates, particularly as regards A, whose MLE estimator was
highly variable. Regarding the BIAS of © and A estimators, the two
competing methods exhibited opposite behavior, POME being outperformed
with respect to 6 but showing superiority in estimating A.

The results shown in Table 6.1 gave rise to the suspicion that
relative to the MLE method, POME provided poorer estimators of the TCEV
basic component parameters and that only for this reason the superiority
substantially exhibited in estimating ©® and A decayed when quantile
estimates were considered. To substantiate it, a large number of
experiments, five thousand synthetic series each with forty years of
record were generated, and parameters 91 and Al were estimated for each
series using equations (6.38) and (6.39) while keeping ©® and A constant
and equal to the population values. BIAS and RMSE of the so obtained
estimates are shown in Table 6.2 where they were also compared with the
respective values given by the MLE procedure (S. Gabriele, personal
communication).

As had been suspected, in this case POME performed worse than MLE
with regard to both parameters and quantiles, though no significant dif-
ference was shown with respect to BIAS., This is important because it
suggests that valuable estimates of TCEV quantiles could be attained by
combining a different basic component estimator with the POME one, the
latter used to reach good estimates of the regional parameters 6 and A.
6.6 Conclusions

The use of the principle of maximum entropy (POME) for deriving the
two-component extreme value distribution (TCEV) sheds further light on

this distribution, which has recently been shown to offer a practical
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Table 6.2. BIAS and RMSE of site-specific estimates
obtained keeping 6 and A constant.

POME MLE
BIAS RMSE BIAS RMSE
Parameters
61 -0.01 0.18 -0.02 0.14
Al 0.20 0.64 0.18 0.52
Quantiles
F = 0.5 0.00 0.09
0.9 0.00 0.12 -0.01 0.10
0.99 -0.01 0.15 -0.01 0.12
0.999 -0.01 0.16 -0.01 0.13

approach to the regional flood frequency analysis. POME specifies the
constraints sufficient to derive the TCEV distribution and with respect
to which this distribution can be thought to be minimally prejudiced and
consistent.

Tﬁe estimation method based on the POME permits both site-specific
and regional estimation. The equations to be solved for giving para-
metér estimates seem relatively simple when compared with those of the
MLE method.

The regionalized TCEV-POME estimation procedure, proposed for appli-
cation in a homogeneous region with respect to the shape parameters ©
and A, performs comparably with the analogous regionalization‘glgorithm
which employs the MLE method. In particular, regional estimates of ©

and A obtained by using the proposed procedure are found to exhibit
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favorable root mean square error (RMSE) in the examined case. Neverthe-
less, quantile elements obtained using at-site estimates of the basic
component parameters together with regional estimates of © and A do not
show, relative to the MLE method, any improvement in RMSE. Also, they
are, even if only slightly, more biased.

As a consequence, one can argue that valuable regional estimates of
TCEV quantiles can be attained by combining the POME estimators of 6 and
A (or at least of A when only godd performance in BIAS is sought) with
another estimation procedure, e.g., the MLE method, which provides good

estimates of the basic component parameters.



Chapter 7

CONCLUDING REMARKS

This study was concerned with evaluating and comparing the perfor-
mance of various estimators of commonly used flood frequency models
through Monte Carlo sampling experiments. The motivation for the study
stemmed from the fact that for the rather small samples encountered in
hydrology, the various competing estimators can yield estimates that
differ significantly from each other in terms of the performance indices
of MSE, BIAS, and SE. In affect the estimators extract different
amounts of useful information from the sample as reflected by their
performance indices. The estimate of the T-year return period quantile
constitutes an important design variable in many engineering problems.
Thus, it is important that the performance of competing estimators is
evaluated so that the estimator extracting maximum information from the
sample can be recommended for the purpose of design.

The models considered were Gumbel's extreme value type 1 (EV1), log
Pearson type 3 (LP3), and the two component extreme value (TCEV) distri-
butions. These models ranged from the simple and oldest two parameter
EV]l .to the most recent four parameter TCEV. An attempt was made to
include all available estimators of a model in the performance evalua-
tion studies. Some of the estimators were computationally not so
amenable as others. The MLE estimator applied to the LP3 is one such
example. In such casés, investigations were made into the behavior of
the estimator, and extensive search procedures designed wherever
possible. The underlying objective was to find the estimates for all

the samples rather than reject the sample, as 1s the practice sometimes
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followed by some investigators. In the random sampling experiments, it
does not appear to be reasonable to reject the samples.

The EV1 is perhaps one of the most well known and widely.ﬁsed
models in flood frequency analysis. The model is simple to use, and can
be particularly useful for moderately skewed flood data. Seven estima-
tors of EV1 were used in the study reported here. Four estimators,
namely, MLE, ENT, PWM, and MOM performed well and proved attractive on
various grounds. MOM was computationally simplest to use followed by
PWM, ENT, and MLE. MLE provided most efficient quantile estimates even
for small sample sizes and large recurrence intervals. PWM yielded
unbiased estimates of the quantiles, as can also be proved theoreti-
cally. ENT performed practically in the same way as MLE, and was
somewhat easier to solve than MLE. A bias-corrected MOM quantile
estimator was also derived based on the sampling experiments and its
validity tested. The incorporation of serial correlation in the samples
worsened the performance of all the estimators. However, the estimators
performed much more similarly in this case.

LP3 is a three parameter distribution capable of modeling the high
skewness and kurtosis likely to be encountered in AFS. The possibility
of LP3 minimizing the condition of separation (Landwehr, et al., 1978)
has'not yet been fully investigated (Hoshi and Burges, 1981). Six
estimators of LP3 were included in the simulation study. Many signifi-
cant results emerged on account of this study. The method advocated by
U.S. Water Resources Council faired poorly. An advantage in favor of
this method is claimed to be its simplicity. However, simple procedures
were devised for the superior estimators. These procedures obviated

iterative procedures. Hence, it no longer seems reasonable to continue
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to use Water Resources Council's estimation method, even on grounds of
computational simplicity. MLE estimator required extemnsive search
procedure and large computational effort, and yielded disappoiﬁting
results. ENT performed similar to MLE, and likewise proved unattrac-
tive. MIX and MMD came out as clearly superjor to other estimators in
terms of overall performance, with MIX seeming to hold an edge over MMD.
The simple procedures proposed in the study to solve for MMD and MMI
estimates should hopefully make the hydrologists more willing to use
these methods of estimation for the LP3 distribution.

The TCEV was suggested by Rossi, et al. (1984), and was shown to
account for the condition of separation in Italian floods. The
distribution can be considered to be a mixture of two EV1 distributions.
The drivation of TCEV via the principle of maximum entropy helped gain
more insight into the properties of the distribution. It also yielded
the ENT estimator which was shown to be suitable for both site-specific
and regional estimation. The ENT estimation system appeared simpler
than the MLE system. Performance of the ENT estimator was evaluated in
a regional analysis framework, and was found to be comparable to

MLE-based regionalization procedure (Rossi, et al., 1984).
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